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Abstract

Radio telemetry and microsatellite DNA analyses were used to describe spawning

migrations and the spatial scale of genetic differentiation among populations of bull trout

(Salvelinus confluentus) in the Duncan River system, southeastern British Columbia.  Over two

years, 66 radio-tagged bull trout were tracked to destinations in the upper Duncan River.  The

distribution of bull trout by destination in the upper Duncan River and migration timing among all

destinations did not vary between the two study years.  One third of bull trout tracked for two

spawning migrations switched spawning stream from one year to the next.  There was also a trend

for increasing size of radio-tagged bull trout with spawning stream size.  This suggests that bull

trout in the upper Duncan River do not have fidelity at the scale of individual spawning stream.

Microsatellite DNA analysis of juvenile bull trout from two spawning streams in the upper Duncan

River indicate that there is little between stream variation.  Exact tests of population differentiation

over allele frequencies of six polymorphic microsatellite loci suggest no significant genetic

differentiation between the two spawning streams.  An analysis of molecular variance (AMOVA)

partitioned a small (< 1%) but significant amount of genetic variance to the between spawning

stream variance partition.  The estimate of between spawning stream FST was 0.01.  These

estimates of low genetic variation between spawning streams, especially when combined with direct

evidence from telemetry, suggest that bull trout in the upper Duncan River do not home at the scale

of individual spawning streams.
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Chapter 1 - General Introduction

The way species are subdivided into reproductive groups, or populations, is

critical for conservation and management (Vogler and DeSalle 1994; Bohonak 1999).

Different populations within a species often reflect different current and recent historical

evolutionary events.  Preserving this within species genetic diversity is thought ensure

long-term species viability (Moritz 1994; Avise 1995).  To preserve, or manage, this

diversity requires an understanding of the geographic scale over which populations occur.

Divergence among populations is a function of the strength of local selection and the

amount of gene flow among populations.

Important determinants of the amount of gene flow between two populations

include dispersal ability and the presence and location of barriers to dispersal (Waples

1998; Bohonak 1999).  In the absence of barriers to dispersal, the magnitude of migration

and gene flow between otherwise separate populations is partly a function of geographic

proximity.  Adjacent populations exchange migrants more frequently than populations

separated by greater distances. This phenomenon is called “isolation by distance” (Wright

1943; Slatkin 1993).

In organisms that migrate between feeding and breeding locations, the level of

population divergence is often a function of degree of fidelity to discrete reproductive

sites.  If individuals born in different places home (i.e. return) to specific reproductive

sites, this could influence interpopulation divergence.  Homing decreases gene flow among

reproductive sites and, potentially, can re-enforce geographic isolation among populations

(Taylor 1991).  Without gene flow, populations in different environments will adapt to

local conditions, and diverge (Barton and Hewitt 1989).  Even in the absence of strong

selection, isolated populations will diverge due to genetic drift (Wright 1931); however,

the migration of even a small number of reproductive individuals between populations will

prevent the fixation of local genotypes (Wright 1931; Hartl and Clark 1989; Mills and

Allendorf 1996).  From a management or conservation perspective, differentiating among

divergent populations is, therefore, a species specific task.  The processes leading to

interpopulation divergence are well studied in salmonid fishes.
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Generally, salmonid fishes tend to home (i.e. return to their natal streams), albeit

with varying degrees of fidelity (Scheer 1939; Banks 1969; Nordeng 1977; Quinn 1993;

McElhany et al. 2000).  In these fish, homing typically leads to geographic isolation and

local adaptation, often within individual spawning streams (Scheer 1939; Quinn and

Dittman 1990; Taylor 1991).  Homing probably is especially important for semelparous

Pacific salmon (Oncorhynchus spp.): it increases the probability that the one chance for

reproduction is successful.  Banks (1969) commented that iteroparous Atlantic salmon

(Salmo salar) may home less accurately than semelparous Pacific salmon, since Salmo has

scarcely speciated relative to Oncorhynchus.  Management and conservation of salmonid

fishes focuses, or attempts to focus, at the level of genetically distinct units (Allendorf and

Phelps 1981; Taylor 1991; Utter and Ryman 1993; Allendorf et al. 1997).  Critically

important to this management objective is knowledge regarding where genetically distinct

groups occur and, in the case of salmonid fishes, this often corresponds to specific

spawning streams (Ryman 1983; Taylor 1991).

Bull trout (Salvelinus confluentus), is an iteroparous salmonid native to

northwestern North America (Cavender 1978; Haas and McPhail 1991).  Historically, bull

trout ranged over 25o of latitude from the McCloud River in northern California to the

Mackenzie River in the North West Territories and between the Pacific Ocean and the

eastern slopes of the Rocky Mountains (Haas and McPhail 1991; McPhail and Baxter

1996).  Because of population declines in the U.S., bull trout in that country are listed as

threatened under the Endangered Species Act (Barry 1999).  Usually, these declines are

attributed to habitat degradation, habitat fragmentation, and exotic species introductions

(Rieman and McIntyre 1993; Watson and Hillman 1997).  Bull trout are long lived

(potentially > 20 years) that occur as one of four life history types: resident, fluvial,

lacustrine, or anadromous (Fraley and Shepard 1989; Goetz 1989; McPhail and Baxter

1996).  Bull trout spawn in running freshwater in the fall.  Like other Salvelinus species,

they are adapted to cold water, and their distribution suggests strict temperature

requirements (Rieman and McIntyre 1993; Parkinson and Haas 1996).  In all but the

resident life history form, bull trout migrate between geographically separate spawning

and feeding areas.  Eggs incubate over winter and hatch early in spring.  Juvenile bull trout
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remain in the natal stream for as long as three summers before moving to either larger

streams, lakes or nearshore marine areas (McPhail and Murray 1979; Goetz 1989; Haas

and McPhail 1991; McPhail and Baxter 1996).  Age of first maturity may be four years,

although more commonly bull trout do not mature until age five to seven (Allen 1980;

Fraley and Shepard 1989; Goetz 1989).

Bull trout spawning migrations are not well studied.  In a review of migratory

timing information, McPhail and Baxter (1996) found that there was no appreciable

difference in spawning time across 200 of latitude.  Generally, bull trout spawning

migrations begin in the spring or early summer, with fish arriving at a spawning destination

in early to late August.  Spawning occurs from early September to mid October, with fish

leaving spawning areas shortly after spawning is completed (McPhail and Baxter 1996).

Several studies have addressed migratory timing with radio telemetry (McLeod and

Clayton 1994; Schill et al. 1994; Swanberg 1997; O'Brien and Chamberlain 2000).  These

telemetry studies determine timing of migrations more specifically for particular regions,

and help to define seasonal habitat use by bull trout for conservation and management

strategies.  Telemetry also can help identify limits and barriers to dispersal.

Genetic studies suggest that bull trout occur as two major phylogenetic groups: a

coastal and interior group (Spruell and Allendorf 1997; Taylor et al. 1999).  This broad

scale structure is attributed to recent historical isolation within two glacial refugia south of

the Cordilleran ice sheet (Taylor et al. 1999).  Genetic studies also generally find low

genetic diversity in restricted geographic areas, such as within major watersheds of large

river systems like the Columbia and Fraser, with relatively high differentiation between

such regions (Leary et al. 1993; Spruell and Allendorf 1997; Williams et al. 1997; Costello

and Taylor unpubl. MS).  Most evidence suggests that bull trout home accurately to natal

streams for reproduction (as reviewed by Goetz 1989), although some studies have

suggested that homing may not be accurate at the scale of natal stream (McPhail 1979;

Oliver 1979; see also references in Goetz 1989).

My thesis focuses on the application of radio telemetry and molecular genetic

techniques to an investigation of the relationships between bull trout spawning migrations,

patterns of movement among potential spawning locations, and the spatial scale of
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population structure.  I have organized the thesis into two primary chapters around the

telemetry and molecular genetic methods I used.  Each primary chapter is written as a

stand-alone manuscript; although, because of repeated citations in each chapter, only one

list of cited literature is presented.  This organization, although convenient for later

publication of results, requires repetition of introductory and discussion material in each

chapter.  The chapters are structured as follows:

Chapter 2. Bull trout (Salvelinus confluentus) radio telemetry in the Duncan
River: migratory timing and insight into the mechanism of spawning
stream selection.

This chapter presents results of a three year (1995-97) radio telemetry study of

bull trout migrations in the Duncan River, a tributary to Kootenay Lake in southeastern

British Columbia.  I describe the migratory timing of bull trout moving from Kootenay

Lake to destinations in the upper Duncan River.  I compare the number of bull trout

migrating to specific destinations over two years, and test whether the size of radio-tagged

bull trout is related to the size of the tributaries to which the fish migrated.  I estimate of

the total number of bull trout in the upper Duncan River in one year on the basis of

migrants trapped leaving a spawning stream.  I also describe the migration of six bull trout

to the upper Duncan River in two consecutive years, and changes in their migratory

destinations between years.  I use my estimate of total numbers from the trap, and the

proportion of fish changing destination to provide a rough estimate of the magnitude of

switching among spawning streams.

Chapter 3. An evaluation of genetic differentiation between two bull trout
(Salvelinus confluentus) spawning streams in the upper Duncan
River using microsatellites.

I present microsatellite allele frequency data from juvenile bull trout collected in

two spawning tributaries to the upper Duncan River.  From these data, I calculate

measures of population differentiation and examine population divergence among these

spawning streams.  Under the assumptions of the island model of population structure
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(Wright 1943), I estimate the number of migrants between the two spawning streams.  I

compare this estimate of migration qualitatively with the telemetry results presented in

Chapter 2.  I discuss my results in relation to other genetic studies of bull trout at similar

geographic scales.

Chapter 4. General Conclusions

In this chapter, I summarize the results presented in Chapters 2 and 3 as they

relate to bull trout in the upper Duncan River.  I compare the results of the telemetry and

genetic methods used.  I also discuss the implications of my results in relation to the

management and conservation of bull trout in general.
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Chapter 2 - Bull trout (Salvelinus confluentus) radio telemetry in the

Duncan River: migratory timing and insight into the mechanism of

spawning stream selection

2.1 Introduction

Bull trout (Salvelinus confluentus) is an iteroparous salmonid native to

northwestern North America (Cavender 1978; Haas and McPhail 1991).   Prior to the

taxonomic work of Cavender (1978) and Haas and McPhail (1991), bull trout were

considered Dolly Varden (Salvelinus malma).  Historically, bull trout ranged over 25o of

latitude from the McCloud River in northern California to the Mackenzie River in the

North West Territories and between the Pacific Ocean and the eastern slopes of the Rocky

Mountains (McPhail and Baxter 1996).  Because of population declines in the U.S., bull

trout are listed as threatened under the Endangered Species Act (Barry 1999).  Usually,

these declines are attributed to habitat degradation, habitat fragmentation and exotic

species introductions (Rieman and McIntyre 1993; Watson and Hillman 1997).  In British

Columbia (BC), bull trout are ‘blue listed’, meaning that they are a species of special

conservation concern.  Bull trout are the only fish species identified by the BC Forest

Practices Code as requiring special forest harvesting related management practices (Haas

1998).

Bull trout are long lived (potentially > 20 years; McPhail and Baxter 1996), spawn

in running freshwater, and occur as one of four life history types: resident, fluvial,

lacustrine or anadromous (Fraley and Shepard 1989; Goetz 1989; McPhail and Baxter

1996). Spawning occurs in the fall.  Eggs incubate over winter and hatch in spring.

Juvenile bull trout remain in the natal stream for as long as three summers before moving to

larger streams, lakes or nearshore marine areas (McPhail and Murray 1979; Goetz 1989;

Haas and McPhail 1991; McPhail and Baxter 1996).  Age of first maturity may be four

years, although more commonly bull trout do not mature until age five to seven (Allen

1980; Fraley and Shepard 1989; Goetz 1989).  Spawning frequency is uncertain, although

it is unlikely that spawning occurs every year after first maturity (Allen 1980; Goetz 1989;

McPhail and Baxter 1996).  With the exception of the resident life history, bull trout
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migrate between geographically separate spawning and feeding areas.  Bull trout migrations

are often in excess of 200 km (Clayton and Mcleod 1993; Schill et al. 1994; Swanberg

1997; O'Brien and Chamberlain 2000), and in rare instances, where movement is not

blocked, can exceed 500 km (Burrows et al. in press).  Until recently, little quantitative

migration data were available.

Much of the literature on bull trout migratory behaviour consists of provincial and

state fisheries agency reports.  Two reviews of this literature (Goetz 1989; McPhail and

Baxter 1996) have summarized data from throughout the range of bull trout.  In general, it

is known that bull trout migrate throughout the summer, arriving at spawning locations

from mid August to early October.  Spawning activity has been observed as early August

(Metolius River tributaries – Ratliff 1987 as cited by Goetz 1989) and as late as October

(MacKenzie Creek – McPhail and Murray 1979).  In their review, McPhail and Baxter

(1996) found no suggestion of differences in the timing of spawning across 200 latitude.  It

appears that the timing of spawning, and presumably the timing of spawning migration,

varies little over the range of bull trout.

Swanberg (1996; 1997) conducted a radio-telemetry project in the Blackfoot

River in Montana.  Bull trout were collected from locations in the Blackfoot River, radio-

tagged, and tracked to spawning locations in tributary streams.  Spawning migrations

began as early as June, with bull trout arriving at spawning locations in early July.

Spawning did not take place until late September.  Swanberg (1997) documented strong

fidelity to feeding locations in the mainstem Blackfoot River.  After round trip spawning

migrations of up to 150 km, 86 % of bull trout returned to within 20 m of their original

point of capture in the mainstem river (Swanberg 1997).

Schill et al. (1994) examined bull trout spawning migrations with radio telemetry

in the Rapid River, a tributary of the Salmon River in Idaho.  Movement into the Rapid

River began as early as April 30, and bull trout generally arrived at spawning locations in

early August.  Spawning occurred in early September.  Schill et al. (1994) documented

high post spawning mortality in the Rapid River: only 31% of the tagged bull trout left the

Rapid River and returned to feeding areas in the Salmon River.

It is usually assumed that bull trout home to their natal streams (Goetz 1989);

however, despite suggestions that this may not be the case (McPhail and Murray 1979), the
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mechanism of spawning stream selection by bull trout has not been examined.  McPhail and

Murray (1979), based on observations from two years of data from a trap on a small bull

stream in British Columbia, suggested that as bull trout age and grow, they switch to larger

spawning streams.  They based this suggestion on the observation of one fish returning to

McKenzie Creek in both study years, only to leave the stream without spawning in the

second year.  The year it left without spawning, this fish was the largest bull trout to have

entered the creek. McPhail and Murray (1979) also found that the mean size of bull trout

spawning in McKenzie Creek was smaller than the mean size of bull trout captured by

anglers from Upper Arrow Lake, into which the creek flows.  In addition, they observed

that larger streams flowing into Upper Arrow Lake contained larger spawning bull trout.

I used radio telemetry to examine the migratory behaviour of bull trout in the

Duncan River, BC.   I wanted to determine the extent and timing of spawning migrations of

bull trout to destinations in the upper Duncan River.  In addition, I wanted to identify bull

trout spawning locations.  I also tested whether there was a positive relationship between

size of destination stream and size of fish as suggested by McPhail and Murray (1979).  My

study was conducted within a larger project designed to identify bull trout spawning

locations in the upper Duncan River and examine the effect of a water storage dam on the

Duncan River on bull trout migrations.

The questions I addressed were

• What is the timing of bull trout migrations in the Duncan River?

• What streams in the upper Duncan River are used by bull trout for spawning?

• Is there a relationship between size of bull trout and the size of their chosen

spawning stream, as suggested by McPhail and Murray (1979)?

Study Site

The Duncan River, located in southeastern British Columbia, drains from the

Selkirk and Purcell mountains into Kootenay Lake and, ultimately, into the Columbia River

(Fig. 2-1).  On 31 July 1967, Duncan River was impounded by the closure of Duncan Dam,

located approximately 10 kilometers upstream of the river’s confluence with Kootenay

Lake.  Duncan Dam is 40 m high and creates a 72 km2 reservoir.  The dam provides water

storage (1.73 billion m3), but has no power generation facilities (Anonymous 1986).
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Upstream of the Duncan Reservoir, the upper Duncan River drains an area of nearly 1300

km2.

The migration route of bull trout from feeding areas in Kootenay Lake to

spawning locations in the upper Duncan River requires passage through Duncan Dam.

Studies prior to 1967 predicted that the migration route of bull trout would be blocked by

impoundment (Peterson and Withler 1965).  In 1968, the first senior operator at the dam,

‘Dutchy’ Wageningen, altered spring and summer discharge at Duncan Dam to allow bull

trout access to the upper river.  Currently, this ‘fish transfer’ procedure continues under the

supervision of BCHydro, the BC Ministry of Environment, Lands and Parks - Fisheries

Section (MELP), and Len Wiens - the present senior operator.  Tag recapture information

prior to this study suggested that bull trout are able to ascend the dam (Fleck 1977; J. Bell,

MELP, pers. comm.), but in 1994, aerial surveys of the upper Duncan River system failed

to locate evidence of spawning (C. Spence, MELP, pers. comm.).  Tagging studies of bull

trout from the Duncan River provide evidence of migrations throughout the larger

Kootenay River system, with tag returns ranging from Trout Lake in the north to the

confluence of the Kootenay and Moyie rivers in the south (Fleck 1977; Fig. 2-1).
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Figure 2-1.  Map of the Duncan River system and Kootenay Lake. Inset map locates the study area
within British Columbia.
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2.2 Methods

Capture and tagging

During this study, I used several different sized radio tags, which varied in

transmission duration and frequency (Table 1).  All radio tags were digitally encoded.  This

allowed reception equipment to distinguish individual signals.  Lotek Engineering,

Newmarket, Ontario manufactured the radio tags and reception equipment.

Table 2-1.  Characteristics of radio tags employed in the study.

Channel Frequency
(MHz)

Number
deployed

Duration
(months)

Diameter
(mm)

Length
(mm)

Antenna
length (mm)

Mass (g)

5 149.400 31 12 11 50 400 8.2
15 148.400 16 6 11 45 370 7.1
20 149.700 15 24 15 50 400 15.5
22 149.740 16 12 11 50 400 8.2
31 150.120 18 12 11 50 400 8.2

I obtained bull trout for radio tagging from four locations in the Duncan River

system: the discharge structure at Duncan Dam, the tailrace channel immediately

downstream of the dam, the lower Duncan River (between the dam and Kootenay Lake),

and the upper Duncan River.  Bull trout were captured by angling with spoons at locations

other than the discharge structure at Duncan Dam.  Those captured at the dam were fish

that had actively moved into the flip bucket at the downstream end of the discharge tunnel.

Presumably they were attempting to move through the dam.  By stopping flow through the

tunnel, and lowering water levels in the flip bucket with a pump, I was able to access bull

trout gathering there.  BCHydro staff at Duncan Dam facilitated my access to bull trout in

the flip bucket by manipulating discharge, controlling pumps and assisting with fish

capture.  All bull trout present in the drained flip bucket were tagged with external

individually numbered ‘T-anchor’ style tags (Floy Tag Inc. Seattle, Washington) and

measured (fork length) with a flexible tape.  BCHydro, Ministry of Environment and

Columbia Basin Compensation Program staff and volunteers assisted with capture and

tagging of bull trout in the flip bucket.  I selected bull trout from the flip bucket captures

for radio tagging.
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I did not select bull trout randomly for transmitter application.  The weight (in

water) of surgically implanted tags should not exceed 2% of the weight (in air) of the fish

destined to carry it, and ideally this ratio should not exceed 1% (Winter 1983; Marty and

Summerfelt 1986; McLeod and Clayton 1993).  By selecting bull trout that exceeded 500

mm fork length (FL), in all cases I kept the weight ratio below 1%.

I attempted to radio tag only male bull trout; however, sex determination before

surgery was difficult, because few secondary sexual characteristics were evident.  I targeted

males to limit effects of radio tagging on reproduction.  When possible during surgery, I

determined sex by internal examination of the gonads.

I anaesthetized selected fish in a cooler containing 30 L of water with tricane

methane sulfonate (MS222) at 100 ppm.  Whenever possible, I used the anesthetic bath on

two or three fish that did not undergo surgery before anaesthetizing a surgical candidate.

This was done to lower the stress of reduced pH brought about by the addition of MS222

(Bidgood 1980).  I anaesthetized bull trout to stage 4 for surgery.  Stage 4 anesthesia is

characterized by loss of both equilibrium and reactivity to external stimuli as well as a slow

but regular opercular rate (McKinley et al. 1992).

Before surgery, I measured mass using a spring scale with the fish supported in

either a collapsible fish tube or weighing bag of known mass.  Subsequent to measuring, a

radio tag was inserted into the abdominal cavity (as described by McLeod and

Clayton1993).  Briefly, I placed the anaesthetized fish on its back in a wet neoprene lined

wooden ‘V’-trough and covered it, except for the region of incision, with moist towels.  In

1995, I made a 2.5 cm long incision into the abdominal cavity immediately anterior to the

pelvic girdle and approximately 1 cm off, and parallel to, the mid-ventral line.  In 1996, the

incision was made directly on the mid-ventral line.  This was done to reduce damage to the

ventral musculature.  I then inserted a stainless steel needle (16 gauge, 5 cm long) through

the body wall from posterior to and above the pelvic girdle into the incision.  I threaded the

whip antenna of the radio tag through the needle, removed the needle, and inserted the tag

into the abdominal cavity.  I closed the incision with three or four interrupted sutures and

applied betadine to the closed incision and antenna exit wound.  To recover the fish after

surgery, they were held directly in a stream of flowing water.  When the fish was capable of
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maintaining equilibrium (stage 2 anesthesia - McKinley et al. 1992), it was placed in a

collapsible fish tube and allowed to recover for 30 - 180 min before release.

Prior to 28 June 1995, all radio-tagged bull trout captured at Duncan Dam (22

fish) were released in the flip bucket at Duncan Dam.  I anticipated that the majority of

these fish would be tracked as they ascended the discharge tunnel; however, I did not track

any of these initial releases in Duncan Reservoir or the upper Duncan River.  After 28 June

in 1995, I released all bull trout radio tagged at Duncan Dam directly into Duncan

Reservoir (25 fish).  To ensure a large sample size of migrants to the upper Duncan River

in 1996, I released 34 bull trout radio tagged from flip bucket captures into the reservoir.

Six bull trout radio tagged at the dam in 1996 were released back into the flip bucket.  All

bull trout that were radio tagged away from the dam were released at the point of capture.

In 1996, I recaptured six bull trout carrying radio tags from 1995.  As these tags

should have stopped functioning before the end of the migration period in 1996 I attempted

to surgically remove old tags and replace them with new ones.  In two of the replacement

attempts, I could not remove the old tag and so clipped its antenna close to the body to

minimize drag before inserting a new tag.  In the other replacements I removed the old tag

without incident.  I recaptured two radio-tagged bull trout in the flip bucket in 1997, and

removed (but did not replace) one of the tags.

In addition to radio tagging in 1996, I operated a fish trap on Houston Creek at

the confluence of Houston Creek and the upper Duncan River.  The trap was operational

for a total of 91 h from 24 September to 3 October 1996.  The trap was constructed with

2.5 cm2 plastic coated wire mesh supported by iron fence posts pounded into the stream

bottom.  The trap box was a 2.5 * 1.5 * 1.0 m wood framed box enclosed by 1.0 cm plastic

mesh, with a funnel entrance on the upstream side.  I estimated the number of bull trout

present during the spawning period in Houston Creek from the number of radio-tagged and

untagged fish captured in the trap and the known number of radio-tagged bull trout present

in the creek using the Peterson estimate (as described by Greenwood 1996).  In an attempt

to roughly quantify the number of bull trout migrating into the upper Duncan River in

1996, I assumed that the proportion of radio-tagged to untagged bull trout was the same in

all other location within the upper Duncan River.
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I also conducted stream walks (late September) in 1995 and 1996 through the

portions of Houston Creek, Westfall River and the mainstem upper Duncan River looking

for evidence of spawning.  These searches focused on areas where radio-tagged bull trout

were located.

Tracking

I used a Lotek SRX-400A version 4.01/W5 receiver to track radio-tagged bull

trout by truck, boat and aircraft.  While tracking on the ground or by boat, I used either a

hand held three element antenna or a short range whip antenna.  A Cessna 172 aircraft was

used for the majority of aerial tracking, but I tracked from a Eurocopter AS 350B

helicopter on two occasions and a Cessna 337 aircraft once.  Antenna setup differed by

aircraft: the Cessna 172 had a single forward pointing four element antenna attached to the

port side wing strut, the AS 350B had a single three element antenna attached to the nose

of the aircraft, and the Cessna 337 had a downward-pointing two element antenna attached

to each wing strut.  In the Cessna 337, a switch-box allowed the receiver to ‘listen’ to both

antennae simultaneously or either individually during tracking to help resolve the direction

of receptions.  When tracking from aircraft, I recorded location of receptions as both

written descriptions and coordinates from a GPS.

Generally, I maintained a bi-weekly schedule of tracking flights during the in-

migration and spawning phase in 1995 and 1996 (Fig. 2-2).  As the first radio-tagged fish

began to leave their spawning sites, flight frequency was increased.  In 1997 and 1998, I

flew once in the fall to identify number and location of spawning bull trout.

Figure 2-2.  Dates of tracking flights in the Duncan River system.
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I also used two Lotek SRX-400A version 4.01/W17T receivers as data logging

fixed stations during 1996.  Fixed station sites consisted of a battery-powered (1 deep-

cycle 12V battery) receiver connected to two antennae oriented upstream and downstream

to resolve direction of travel.  Fixed station sites were located at Duncan Dam and 42.5 km

upstream of the dam on the upper Duncan River (Fig. 2.3).  I programmed fixed receivers

to continuously scan each radio tag frequency in sequence for a five-second interval on

each antenna, and record any reception in memory.  With this scan cycle, each frequency

was scanned for a minimum of 12 min each hour.  I downloaded reception information to a

portable computer when the receiver battery was replaced (bi-monthly).

Data analysis

I converted raw aerial, ground, and remote reception data to distance upstream

(+) or downstream (-) of the Duncan Dam in km.  Multiple receptions of an individual bull

trout in one day were reduced, by averaging the locations, to a single daily reception.

Figure 2-3 illustrates the kilometer designations used throughout the study. To begin

analysis of the telemetry data, I characterized the destination of individual radio-tagged bull

trout by the tributary or the section of the mainstem upper Duncan River to which they

migrated.  I then plotted the reception locations for each tagged individual as date vs.

distance from Duncan Dam. Only the movements of those bull trout migrating into the

upper Duncan River are presented.  Unless otherwise noted, all statistics are presented

with the 95% confidence intervals.
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Figure 2-3. Kootenay Lake and the Duncan River with kilometer designations used throughout the
study.  The location of data logging telemetry fixed stations (circles) and the Houston
Creek trap (square) are indicated.
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I first compared the distribution of bull trout by destination in the upper Duncan

River between 1995 and 1996 using a Fisher exact test.  I then divided the movements of

bull trout migrating into the upper Duncan River into three phases: the in-migration,

spawning site residence, and out-migration.  I considered the in-migration phase underway

when a radio-tagged individual was released after tagging or continuous upstream

movement began, and it continued until upstream movement ended.  The spawning site

residence phase continued from the end of the in-migration phase until a continuous

downstream movement began.  I considered the out-migration phase complete when a tag

was first detected in the Duncan Reservoir (1995) or when it had passed below the fixed

station receiver located near the inlet of the upper Duncan River to the Duncan Reservoir

(1996).

To simplify these data, for each destination category I defined a separate arbitrary

distance from Duncan Dam to distinguish between the three migration phases.  The

residency mark was positioned to include all similar migrants to a particular destination and

was based on cessation of upstream movement by those migrants.  For example, when a

radio-tagged bull trout migrating to Houston Creek (a tributary of the upper Duncan River)

crossed a mark 100 km upstream of Duncan Dam, I considered the in-migration phase to

have ended and the spawning site residency phase to have begun.  Similarly, when the 100

km residency mark was crossed in the downstream direction by bull trout leaving Houston

Creek, I considered the spawning site residence phase complete and the out-migration

phase to have started (Fig. 2-4).  Most often, I did not locate radio-tagged bull trout as

they crossed the residency mark; I inferred the date from the closest receptions immediately

upstream and downstream.
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By dividing movement patterns into these three phases (Fig. 2-4), I was able to

calculate 9 migration statistics:

•  in-migration start date / time (days) / rate (km•day-1)

•  residency start date / time (days),

•  out-migration start date / time (days) / rate (km•day-1) / end date.

Figure 2-4.  Example of a bull trout migration pattern based on radio telemetry location fixes
(connected squares) showing the function of the residency mark in defining the boundaries
between the in-migration, residence and out-migration phases.

I compared the nine migration statistics, along with FL and mass, over year of

migration and destination category using two-factor analysis of variance (ANOVA).  This

study was not designed to fit the ANOVA model and, as such, I used it only as an

exploratory tool.  The first factor in the ANOVA analysis was the year of migration.  For

bull trout with two years of migration data in the upper Duncan River, I considered each

migration year as independent in terms of the ANOVA analysis. The second factor in the

analysis was destination. Because of small sample sizes to some destinations, I grouped
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low-use destinations into more broad categories for analysis.  Where no differences were

found by the two-factor ANOVA analysis, I pooled migration statistics.

I compared, using t-tests, the migration statistics of bull trout migrating through

the discharge structure to those that were moved above, to determine if moving bull trout

above Duncan Dam changed migration timing.

In order to determine the relative sizes of spawning tributaries in the upper

Duncan River system, I estimated the catchment area (km2) of each targeted tributary from

1:50,000 topographic maps.  I regressed instream flow estimates of five tributaries

calculated from portable flow-meter transects (Anonymous 1990) against catchment area

to evaluate the usefulness of catchment area as a predictor of flows in the upper Duncan

River system.  The five instream flow measurements were made over a two-day period in

October 1996 (stable low flows). I then regressed the mean FL of radio-tagged bull trout

against catchment area of their destination tributaries.

2.3 Results

Capture and tagging

Ninety four bull trout were tagged over the duration of the project.  Two bull

trout died within one hour of the surgical procedure (prior to release).  Anaesthesia time

averaged 360 ± 28 s (n = 92). Surgery time, measured as the total time from removal of the

fish from the anaesthetic to the start of recovery, averaged 628 ± 31 s (n = 95).  Post

surgery recovery, from removal of the radio-tagged bull trout from the surgical trough until

equilibrium and reactivity was regained, averaged 351 ± 35 s (n = 94). The biological data

collected from radio-tagged bull trout that migrated to destinations in the upper Duncan

River are appended (n = 66).

I found no significant difference in fork length and weight distributions of radio-

tagged bull trout across years (t-tests, P = 0.882 and 0.468, respectively) and pooled these

data.  Fork length (Fig. 2-5) and mass of only the radio-tagged bull trout migrating to the

upper Duncan River averaged 703 ± 14 mm and 3575 ± 240 g (n = 66).  There was no

significant difference in mean FL between all bull trout captures from the flip bucket in

1995 and 1996 (two-tailed t-test, P = 0.558) and again I pooled the data.  In 1995 and
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1996, 533 bull trout (mean FL = 652.8 ± 5.0 mm) were captured and measured in the flip

bucket at Duncan Dam.  The average FL of radio-tagged bull trout that migrated to the

upper Duncan River was significantly larger than average FL of bull trout captured at

Duncan Dam that were not radio-tagged (one-tailed t-test, P < 0.001; Figure 2-5).

Figure 2-5.  The fork length (FL) frequency histograms of all bull trout captured at Duncan Dam in
1995 and 1996 (‘DD’ - outline and right axis, n = 533) and of all radio-tagged bull trout
migrating to destinations in the upper Duncan River (‘RT’ - gray bars and left axis,
n=66).

Destinations in the upper Duncan River

In total, I tracked 66 radio-tagged bull trout to destinations in the upper Duncan

River over 1995 and 1996 (Table 2-2).  The majority of these bull trout were physically

moved from below Duncan Dam and released in the reservoir. On average, each of the fish

migrating to the upper Duncan River was located 28.5 ± 7.5 times during the study.  Only

six radio-tagged bull trout migrated through the discharge structure at Duncan Dam

without interference.  Figure 2-6 illustrates the upper Duncan River and location of major

tributaries. The distribution of bull trout by migratory destination (seven categories; Table

2-2) was not significantly different between 1995 and 1996 (Fisher exact test, P = 0.91).
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Destinations with small numbers of radio-tagged bull trout migrating to them were

grouped, giving a total of four destination categories for ANOVA analysis (Table 2-2).

Table 2-2.  Migratory destinations and ANOVA groups of radio-tagged bull trout in the upper
Duncan River. Destination 3, mainstem upper Duncan River, is broken into five sub-
categories (3.a. – 3.e., italics) which are separated by tributary confluences (Fig. 2-6).

Migratory Destination 1995 1996 Analytical
Migrants % of Total Migrants % of Total Group

1.) Houston Cr. 8 30.8 13 32.5 1
2.) Westfall R. 6 23.1 10 25 2
3.) mainstem upper Duncan River 9 34.6 8 20 3
   3.a.) above Houston Cr. 2 7.7 3 7.5 3
   3.b.) Hatteras Cr. to Houston Cr. 4 15.4 2 5 3
   3.c.) Laidlaw Cr. to Hatteras Cr. 1 3.8 1 2.5 3
   3.d.) Westfall R. to Laidlaw Cr. 2 7.7 1 2.5 3
   3.e.) Giegerich Cr. to Westfall R. 0 0 1 2.5 3
4.) Giegerich Cr. 2 7.7 5 12.5 4
5.) Stevens Cr. 1 3.8 2 5.0 4
6.) Hatteras Cr. 0 0 1 2.5 4
7.) Marsh Adams Cr. 0 0 1 2.5 4

TOTALS 26 100 40 100
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Figure 2-6.  Map of the upper Duncan River system with kilometer designations upstream of
Duncan Dam.
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Migratory timing comparisons

Radio-tagged bull trout migrating to destinations in the upper Duncan River

system showed little variation in timing of migration.  The two factor ANOVA

comparisons of migration rate and timing did not vary by destination, between years, or

year by destination interaction.  The ANOVA results are summarized in Table 2-3.  There

was a suggested relationship to destination for FL, mass and out-migration time, but not

between years or in terms of the interaction between year and destination.  As out-

migration time was not significantly correlated (Pearsons correlation coefficient, r = 0.236,

P = 0.09) with out-migration distance I pooled the out-migration time data.  I plotted fork

length data for each ANOVA group (Fig. 2-7) to show the relationship between length and

destination suggested by the two factor ANOVA result.  In Figure 2-7, I suggest the

mainstem upper Duncan River destinations represent the physically smallest destination

category: this is not technically correct, and reflects an assumption that bull trout migrating

to these destinations did not spawn.  Only the fork length of bull trout migrating to Westfall

River and destinations in the mainstem upper Duncan River were significantly different

using a Tukey test (P = 0.01) in a pooled by destination comparison.

Two of the migration statistics used in this analysis are confounded.  Migration

rate statistics, in-migration and out-migration rate, are calculated as distance per day.  The

destination factor of the ANOVA model is also related to distance.  As a result, the

migration rate calculations are confounded due to the relationship between the distance

inherent in both rate and the destination factor of the ANOVA.  The ANOVA calculations

involving rate are included because they do give insights into influence of the year of

migration on migration rates.  A table presenting all migration data used in the ANOVA

analysis, by radio-tag number and destination category, is appended.
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Table 2-3. Two factor ANOVA comparisons of migration data for radio-tagged bull trout by
analysis group (see Table 2.2) and year of the study.

Migration Statistic P-value
Destination

P-value
Year

P - value
Interaction

(Dest.•Year)

Pooled
Mean ± 95 % C.I. (n)

In-migration Start Date 0.280 0.357 0.833 8 July ± 4.4 days (64)
In-migration Rate ** 0.010** 0.332 0.825** 1.80 ± 0.17 km/d (64)
In-migration Time 0.247 0.754 0.981 51.4 ± 4.2 days (64)

Residency Start Date
(In-migration End Date)

0.630 0.358 0.482 29 Aug. ± 2.9 days (64)

Residency Time 0.489 0.650 0.533 31.7 ± 3.4 days (53)
Out-migration Start Date

(Residency End Date)
0.084 0.154 0.733 28 Sept. ± 2.0 days (53)

Out-migration Rate ** 0.350** 0.102 0.711** 9.93 ± 2.78 km/d (52)
Out-migration Time 0.017* 0.655 0.561 8.99 ± 2.69 days (52)

Out-migration End Date 0.849 0.574 0.619 8 Oct. ± 2.68 days (52)
Fork Length (mm) 0.043 0.351 0.360 suggested differences (64)

Mass (g) 0.019 0.471 0.257 suggested differences (64)
* out-migration time was not correlated with distance (see text) and pooled
** comparison is confounded by similarity between factor and data variable (see text).

Figure 2-7. Data used in the calculation of bull trout fork length by destination and year two factor
ANOVA.  Open circles and solid squares are 1995 and 1996 data, respectively.  Error
bars are ± 1 SE.  Destinations (ANOVA groups – Table 2.2) are approximately (see text)
ordered by stream size from smallest to largest (left to right).  Sample sizes are indicated
next to data points.
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The migration statistics of radio-tagged bull trout moving through the discharge

structure at Duncan Dam were not different from bull trout transported and released

upstream (two sample t-tests; minimum P = 0.092 for all migration statistics except in-

migration and out-migration rate).

I confirmed spawning activity within the residency area of radio-tagged bull trout

in Houston Creek and the Westfall River.  Locating bull trout redds was easy in these two

tributaries: redds were located at all locations where radio-tagged bull trout were located

during the last week of the spawning site residency period.  I was unable to locate evidence

of spawning in sections of the mainstem upper Duncan River upstream of Hatteras Creek

(Fig. 2-6) where radio-tagged bull trout were located, despite thorough searches.  I did not

search for evidence of spawning in the mainstem upper Duncan River below Hatteras

Creek; however, the mainstem river downstream of Hatteras Creek (Fig. 2-6) does not

contain habitat usually associated with bull trout spawning (Goetz 1984; McPhail and

Baxter 1996).  I assume that the bull trout migrating to destinations in the upper Duncan

River were not migrating to spawn based on similar bull trout non-spawning migrations

observed by Swanberg (1997) and O'Brien and Chamberlain (2000).  In total, 49 radio-

tagged bull trout migrated to presumed spawning tributaries of the upper Duncan River

during the study.

Catchment area was a useful predictor of stream flow in the upper Duncan River

system.  A linear regression of stream flow estimates on catchment area was significant (P

< 0.001; Fig. 2-8).  Although the sample size is small, the catchment size of different

tributaries explained > 99% of the variation in estimated stream flows (y = 0.029x – 0.636,

r2 = 0.997).  Because I was unable to estimate flows from all streams targeted by radio-

tagged bull trout, I used catchment area as a surrogate (Table 2.4).  I plotted the fork

length of all radio-tagged bull trout (1995 and 1996 combined) against catchment area of

the destination tributary in Figure 2-9.  A linear regression of fork length on catchment area

was significant (P = 0.030), although little of the variation in length was explained by

increasing catchment area (y = 0.301x + 669.2 r2 = 0.095; Fig.2-9).  The relationship

between fork length and catchment area is not robust: when the largest individual (875 mm

FL from Westfall River – 230 km2 catchment; Fig. 2-9) is removed, the regression is not

significant (y = 0.235 + 675.5, r2 = 0.065, P = 0.077).
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Figure 2-8.  The regression of catchment size to instream flow estimate of five tributaries of the
upper Duncan River.  The regression (y = 0.029x – 0.636; solid line) is significant (P <
0.001, r2 = 0.997).

Table 2-4.  The catchment area of tributaries targeted by radio-tagged bull trout in 1995 and 1996.

Stream Catchment
area (km2)

Westfall River 230
Giegerich Creek 113
Houston Creek 107
Hatteras Creek 65
Stevens Creek 51

Marsh Adams Creek 46
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Figure 2-9.  Fork length of radio-tagged bull trout (n = 49) by catchment area of destination
tributaries in the upper Duncan River. The regression (y = 0.301x + 669.2; solid line) is
significant (P = 0.03, r2 = 0.095).  A linear regression excluding the largest fish from this
figure (open circle) is not significant (P = 0.08, see text).

For analysis of migration statistics, I considered the migration of bull trout to the

upper Duncan River over when they returned to Duncan Reservoir.  From subsequent

locations, via both angler recaptures and telemetry fixes, most were tracked back to

Kootenay Lake after reaching Duncan Reservoir.  Over the winter of 1995/96, 82.6 % (19

of 23) radio-tagged bull trout left the reservoir through the discharge structure.  I excluded

three bull trout confirmed killed by anglers after the 1995 migration from this calculation.

Over the winter of 1996/97, 74.3 % (26 of 35) of radio-tagged bull trout were confirmed

to have left the reservoir; excluding three expired transmitters and two presumed

mortalities.  I rarely located radio-tagged bull trout in lakes, because of radio signal

attenuation with depth in water (Winter 1983).  I did however track bull trout throughout

Kootenay Lake, and also located one radio-tagged bull trout at the confluence of the Moyie

and Kootenay rivers in Idaho (Fig. 2-1) the summer after it had been tracked in the upper

Duncan River.  Radio telemetry confirmed all of the suggested movement patterns of bull
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trout in the Kootenay River collected previously using conventional individually numbered

Floy-tags (Fleck 1977).

I also determined the date bull trout moved downstream through Duncan Dam.  In

1995, I only estimated the date based on first location downstream, but over the winter of

1996/97, I placed a remote data-logging receiver at the base of the dam (Table 2-5) to

record actual dates of downstream passage.  Over the winter of 1996/97, I tracked 13 bull

trout moving downstream through Duncan Dam.  On average, bull trout left Duncan

Reservoir on 23 January 1997 (± 30 d) after summer and fall migrations to the upper

Duncan River in 1996.

Table 2-5.  Overwinter out-migration dates of individual radio-tagged bull trout through the
discharge structure at Duncan Dam by year of migration to the upper Duncan River.

1995 migration 1996 migration
16-Oct-95* 8-Oct-96*
16-Oct-95* 20-Oct-96*
16-Oct-95* 26-Dec-96
31-Oct-95* 25-Jan-97
25-Nov-95* 1-Feb-97
13-Aug-96* 7-Feb-97

10-Feb-97
13-Feb-97
16-Feb-97
19-Feb-97
24-Feb-97
10-Mar-97
11-Mar-97

*approximate only  - first reception downstream of the dam
using manual receiver

Multi-year migrations

Six radio-tagged bull trout were tracked migrating to the upper Duncan River in

two consecutive spawning years.  Two of the six entered different tributary streams in the

second migration year (Table 2-6).  If I consider only those bull trout migrating to

presumed spawning locations in 1995 (17 fish), two (11.8%) returned in 1996, and both

entered a different tributary.  In both cases, the bull trout switched to a tributary with a

smaller catchment area than their first tributary destination.  Because many radio tags

expired before the spawning migration in 1997, I cannot estimate the number migrating in

both 1996 and 1997.
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Table 2-6.  Destinations of radio-tagged bull trout migrating to the upper Duncan River in two
consecutive years.

Radio tag F.L. (mm) Sex Destination Distance (km)
number at tagging year 1 year 2 between destinations

22 675 F Westfall R. Stevens Cr. 11.7
30 655 F Mainstem Mainstem 11.5
35 755 M Stevens Cr. Marsh Adams Cr. 18.7
39 655 M Mainstem Mainstem 12.5
40 690 F Mainstem Mainstem 3.5
64 685 M Houston Cr. Houston Cr. 4.0

Houston Creek fish trap

I captured 47 bull trout emigrating from Houston Creek in a fish trap.  Of these

out-migrants, three were radio-tagged (6.4 %) and one was marked with a Floy-tag at

Duncan Dam.  The mean fork length of trapped out-migrants was 564 ± 27 mm (n = 45,

Figure 2-10).  The mean fork length of fish captured at the trap was significantly smaller

than that of fish captured at Duncan Dam that were not radio tagged (pooled 1995 and

1996 dam captures; 1 tailed t-test, P < 0.001).  Twenty one were female, 23 were male, a

single bull trout (FL 411 mm) was of indeterminate sex, and two escaped before

examination.  All but the smallest bull trout captured at Houston Creek showed clear

evidence of spawning.  Females were gaunt and all males had recent scarring on the caudal

fin and peduncle, suggesting spawning (McPhail and Baxter 1996).  All males and females

expressed milt or eggs when anaesthetized and handled.  The mark recapture estimate of

the total number of bull trout in Houston Creek was 167.  Assuming the proportion of

radio-tagged to untagged fish was the same at all destinations in the upper Duncan River,

approximately 500 bull trout migrated into the system in 1996 (Houston Creek was 32.5%

of the total number of migrants in 1996 – Table 2-2).  Based on the proportion of fish

migrating in consecutive years, I estimate that roughly 40 to 50 bull trout switch spawning

stream from year to year in the upper Duncan River.
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Figure 2-10.  The fork length (FL) frequency histogram of bull trout captured at the Houston Creek
trap in 1996 (gray bars, n = 47).

2.4 Discussion

The mean fork length of bull trout receiving radio tags (703 ± 14 mm) was

significantly larger than the mean size of fish captured at Duncan Dam.  This discrepancy

reflects my selection of larger bull trout for tagging due to size constraints associated with

the implantation of tags.

In this study I have assumed that radio tagging does not change the migratory

behaviour of bull trout.  Except for a short period immediately following tagging, many

studies (Stasko and Pincock 1977; Winter 1983; Marty and Summerfelt 1986; Swanberg

1996; Thorstad et al. 2000) suggest that if the transmitter is small relative to the size of the

fish tagged, the effect of transmitter implantation on fish behaviour and movement can

safely be ignored.  By ‘small’, I follow the definition of Marty and Summerfelt (1986): the

mass (in water) of surgically implanted tags should not exceed 2% of the mass (in air) of

the fish destined to carry it and, ideally, this ratio should not exceed 1%.  I kept the tag to

fish weight ratio below 1% in all cases.  In this study, I did not explicitly test the

assumption that radio tagging did not effect behaviour, but several of my observations

corroborate the findings of others.  I found that bull trout carrying transmitters often

migrated to the extent of available habitat.  I also located untagged bull trout in proximity
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to radio-tagged fish at all locations I examined, including a tagged bull trout male spawning

with an untagged female in Westfall River.  This suggests that their behaviour was similar.

Untagged bull trout were also captured during out-migration from Houston Creek at the

same time as radio-tagged individuals.

Bull trout migrations in the upper Duncan River

Radio telemetry proved useful in obtaining data on bull trout spawning migrations

in the upper Duncan River.  The pattern of bull trout migration typically consisted of in-

migration to a destination in the upper Duncan River, residence within a short distance of

that destination, and a rapid out-migration relative to the time of in-migration and

residence.  Comparisons of the 1995 and 1996 migration statistics show the two years to

be very similar (Table 2-3).  Time of in-migration, residence, and out-migration do not

differ between destinations in the upper Duncan River or the year of migration (Table 2-3).

The average bull trout migrating to a destination in the upper Duncan River began moving

upstream of the dam on 8 July.  The average bull trout arrived at its destination on 29

August (51 day in-migration) and remained there for 32 days until 28 September.  In-

migration rate averaged just under 2 km*day-1.  Moving more than 9 km*day-1, the average

out-migrant returned to Duncan Reservoir on 8 October.  Bull trout leave Duncan

Reservoir, and return to Kootenay Lake, throughout the winter (Table 2-5).  The timing of

spawning migrations in the Duncan River fall within the range of bull trout migratory

timing as reviewed by Goetz (1984) and McPhail and Baxter (1996).

The impact of releasing bull trout captured and tagged downstream of Duncan

Dam in the reservoir upstream on migratory timing and behaviour is a concern.  The

migratory timing of bull trout moved over Duncan Dam did not differ from those that

moved through it (P ≥ 0.092), suggesting that the release of bull trout upstream of the dam

did not alter migration behaviour.  I only tagged fish after they actively moved into the

discharge structure at Duncan Dam.  Movement into the discharge structure suggests that

bull trout were attempting to move through.  O’Brien and Chamberlain (2000) compared

the timing of bull trout spawning migrations in the Adams River with my results.  The dates

radio-tagged bull trout arrived and left destination areas in Adams River (no dam) were the

same as Duncan River bull trout.  This suggests that the impact of the dam on the timing of
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spawning migrations is minimal for those fish successfully passing upstream through the

dam.

In total, six tributaries and portions of the mainstem upper Duncan River were the

destinations of migrating bull trout.  The two largest tributaries, Westfall River and

Houston Creek, account for over half of the tagged migrants (Table 2-2).  The distribution

of bull trout among destinations (Table 2-2) did not vary significantly between 1995 and

1996 (Fisher exact test, P = 0.91).  I evaluated whether this distribution was related to

stream size, using catchment area as a surrogate (Fig. 2-8), in terms of the size (Fig. 2-9) of

bull trout migrants as suggested by McPhail and Murray (1979).  For this test, I used only

bull trout migrating to tributary destinations and excluded those migrating to destinations in

the mainstem river (see below).  There was a slight positive relationship between the size of

radio-tagged bull trout and the size of the tributary they migrated too (linear regression, P

= 0.03), but this relationship was not robust.  Perhaps this relationship would be better

resolved if smaller bull trout had been radio-tagged.

McPhail and Murray (1979) suggested that bull trout may be physically restricted

from smaller spawning streams as they grow.  The mean sizes of spawning bull trout

McPhail and Murray (1979) captured were 447 and 438 mm standard length and 1260 and

1097 g for males and females, respectively. These were probably first time spawners.

Duncan Dam bull trout captures were on average more than 200 mm larger than the bull

trout McPhail and Murray (1979) captured in their study.  The largest bull trout I captured

at Duncan Dam was 920 mm and 9500 g.  This amount of variation in size supports

McPhail and Murray’s (1979) suggestion: as bull trout grow, spawning habitat preferences

probably change.  If bull trout switch spawning stream based on size, as the regression of

bull trout size on tributary catchment area suggests, it explains a reduction in fidelity to

natal stream.  It suggests that bull trout may not home accurately at the scale of individual

spawning streams.  It is also possible that the apparent relationship between bull trout size

and spawning tributary catchment area could reflect the effect of selection in streams of

differing size for appropriately sized bull trout.

I assumed that bull trout migrating to mainstem destinations in the upper Duncan

River did not spawn.  I based this assumption on both negative spawning survey results and

a general lack of suitable spawning habitat at mainstem destinations compared to literature
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descriptions (Baxter and McPhail 1996; McPhail and Baxter 1996).  Two other radio

telemetry studies have suggested that some bull trout that participate in the spawning

migration do not spawn.  Swanberg (1996; 1997) found that as many as 70 % of bull trout

radio-tagged in the Blackfoot River in Idaho did not migrate all the way to spawning areas,

and did not spawn.  Swanberg (1996; 1997) found that these fish were generally smaller,

began migrations later, and left tributaries earlier than spawning fish.  Similar results were

obtained in the Adams River, BC (O'Brien and Chamberlain 2000).  Over two years,

approximately 40 % of the radio-tagged bull trout migrating into the Adams River did not

leave the mainstem river.  In Adams River, bull trout remaining in the mainstem were

smaller than those moving into spawning tributaries, and they emigrated from the river

prior to the emigration of individuals that spawned in tributaries.  Bull trout migrating to

mainstem upper Duncan River destinations were generally smaller than other migrants (Fig.

2-7), although all were large enough to be mature based on literature accounts (Goetz

1989; McPhail and Baxter 1996).  Unfortunately, I was unable to collect bull trout at

mainstem destinations and examine them for their level of maturity.

Swanberg (1996; 1997) suggested that non-spawning migrants were moving to

avoid seasonal high temperatures in the mainstem Blackfoot River.  Temperatures in the

mainstem Blackfoot River can exceed 20 0C in July.  Swanberg (1997) specifically

dismissed the hypothesis of foraging for these non-spawning migrants, as prey species were

rare in tributaries of the Blackfoot R.  Seasonally high temperatures may occasionally

exceed 20 0C in the surface waters of Kootenay lake or the Duncan Reservoir, but such

temperatures are easily avoidable with depth.  In the upper Duncan River, I did not sample

mainstem locations enough to estimate abundances of bull trout prey fish species; although,

in all sampling of spawning tributaries (Chapter 3), I encountered only bull trout.  Non-

spawning migrations in the upper Duncan River do not seem related to temperature or

foraging.

Spawning stream switching

Two of six bull trout making repeat migrations switched destination tributary

(Table 2-5) in the second migration year.  Of the six bull trout tracked in consecutive years,

the sex ratio was equal and one male and one female migrated to a different presumed
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spawning tributary (Table 2-5).  Contrary to the hypothesis of McPhail and Murray (1979),

bull trout switching tributaries changed to tributaries with smaller catchment areas.

The observed destination switching suggests that there may be gene flow among

spawning streams.  I was not able to confirm if stream-switching fish actually spawned in

each stream.  I was able to directly confirm spawning activity only in Houston Creek and

Westfall River because of limited access in other streams.  With results like those of

Swanberg (1997) and suggested by O’Brien and Chamberlain (2000), where some bull

trout migrated without spawning, it is important to determine if the observation of

spawning stream switching results in gene flow (see Chapter 3).

Houston Creek fish trap

The bull trout captured during out-migration from Houston Creek were on

average much smaller than those captured at Duncan Dam (Fig. 2-10).  This suggests that

not all bull trout spawning in Houston Creek had migrated from Kootenay Lake.  The

majority of smaller, and probably younger, bull trout trapped in Houston Creek were bull

trout likely migrating from Duncan Reservoir.

I used bull trout captured during out-migration from Houston Creek to estimate

the number of bull trout present in Houston Creek for spawning in 1996.  Using this

estimate (167 fish) I roughly extrapolated the number present in the upper Duncan River in

1996 (~500 bull trout).  I assumed the number present in 1995 was similar to 1996, and

then estimated numbers of untagged bull trout that change destination tributary each year

from the number of tagged bull trout that did so over 1995 and 1996 (approximately 40 to

50 fish).  Clearly this extrapolated estimate is imprecise; nevertheless, it is valuable in that it

provides me a comparison with estimates of migration from genetic analysis presented in

Chapter 3.

Conservation implications

Without confirmation of spawning by bull trout at most locations in the upper

Duncan River, the conservation implications of these telemetry results are difficult to

interpret.  The potentially most important result from a conservation, or management,

perspective is the apparent switching between spawning sites by bull trout in consecutive
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years.  This result suggests that individual spawning streams do not represent genetically

divergent populations in the upper Duncan River.

The apparent non-spawning movements of more than 25 % of the radio-tagged

bull trout into the upper Duncan River is also important from a conservation perspective.

The knowledge that many more bull trout than would be enumerated at spawning sites

have migrated nearly the same distance as spawning fish changes suggests habitat

protection may be necessary beyond only the area of specific spawning sites.  It is

important to know that these non-spawning bull trout move at similar times to fish that

spawn.  Protection measures, such as seasonal angling closures along migration routes, will

benefit both spawning and non-spawning migrants.
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2.5 Appendix

Table 2-7.  The biological data collected from radio-tagged bull trout migrating to destinations in
the upper Duncan River.  ‘Ch.’ is tag channel, ‘Floy’ is the number of the external tag,
‘FL’ is fork length in mm, and mass is measured in kg.

Fish # Ch Tag Code Date Tagged Floy FL Mass Sex
4 5 104 13-Jun-95 577W 640 2.80 M
4 20 102 3-Jul-96 577W 715 3.30 M

10 5 111 14-Jun-95 637W 730 4.10 M
10 20 101 14-Jun-96 636Y 770 4.80 M
20 22 123 27-Jun-95 748W 630 2.75 M
20 20 111 14-Aug-96 748W 720 4.20 M
21 22 124 27-Jun-95 749W 710 3.30 M
22 22 125 28-Jun-95 763W 675 2.80 F
23 22 126 28-Jun-95 801W 810 5.45 F
24 22 127 28-Jun-95 802W 655 2.70 M
25 22 128 29-Jun-95 803W 745 4.35 F
26 22 129 29-Jun-95 761W 705 3.35 M
27 22 131 29-Jun-95 804W 670 3.20 F
28 22 133 29-Jun-95 812W 670 3.05 M
29 5 100 5-Jul-95 810W 780 4.80 M
30 22 134 5-Jul-95 829W 655 2.90 F
31 22 135 5-Jul-95 833W 640 2.90 M
32 22 136 5-Jul-95 520W 645 2.80 M
33 22 137 5-Jul-95 775W 685 3.40 M
34 31 138 13-Jul-95 518Y 850 5.90 M
35 31 141 18-Jul-95 520Y 725 3.50 M
35 5 134 14-Aug-96 520Y 755 4.00 M
36 31 142 18-Jul-95 524Y 875 7.60 M
37 31 143 18-Jul-95 525Y 650 2.80 F
38 31 140 19-Jul-95 533W 665 3.10 M
39 31 144 19-Jul-95 890W 655 2.90 M
39 20 112 14-Aug-96 822Y 695 3.40 M
40 31 145 19-Jul-95 554Y 690 3.20 F
41 31 147 19-Jul-95 557Y 665 2.80 F
42 31 148 19-Jul-95 691W 725 4.00 M
43 31 146 20-Jul-95 575Y 715 3.80 M
44 31 149 20-Jul-95 689W 700 3.40 F
45 31 150 20-Jul-95 675W 685 3.10 F
46 31 151 20-Jul-95 619W 680 2.80 F
49 15 2 3-Sep-95 712W 810 5.00 F
51 31 153 6-Jun-96 848Y 780 4.40 M
53 5 121 14-Jun-96 642Y 650 2.80 M
54 5 122 14-Jun-96 643Y 685 3.10 M
55 5 123 14-Jun-96 638Y 695 3.80 M
56 5 124 14-Jun-96 641Y 720 4.00 M
57 31 154 14-Jun-96 637Y 665 3.00 M
58 5 125 18-Jun-96 846Y 685 3.60 M
59 5 126 18-Jun-96 664W 695 3.50 F
60 5 127 18-Jun-96 557W 685 3.00 M
61 5 128 3-Jul-96 815Y 670 2.70 M
62 5 129 3-Jul-96 879W 610 1.80 F
64 20 103 3-Jul-96 812Y 685 3.50 M
65 20 104 3-Jul-96 814Y 765 5.10 M
66 20 105 3-Jul-96 915Y 685 3.20 M
67 15 3 10-Jul-96 817Y 690 3.00 M
68 15 4 10-Jul-96 907Y 595 2.10 M
69 15 5 10-Jul-96 604W 660 2.40 M
71 20 107 10-Jul-96 821Y 755 3.50 M
72 20 108 10-Jul-96 819Y 800 4.60 M
73 20 109 10-Jul-96 816Y 770 4.40 M
74 20 110 10-Jul-96 818Y 755 3.40 M
75 15 6 15-Jul-96 8019Y 745 4.40 M
76 15 7 15-Jul-96 922Y 625 2.80 M
77 15 9 15-Jul-96 8017Y 695 3.50 F
78 15 10 15-Jul-96 828W 700 3.30 M
79 15 11 15-Jul-96 8036Y 675 2.90 M
80 15 12 15-Jul-96 8007Y 600 2.50 M
81 20 114 15-Jul-96 923Y 760 4.90 M
82 20 115 15-Jul-96 611Y 780 5.40 M
83 5 131 7-Aug-96 672W 680 3.50 M
87 5 135 27-Aug-96 8099Y 635 3.60 M
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Table 2-8.  Summary of migration statistics and destinations of all radio-tagged bull trout migrating
to destinations in the upper Duncan River (used in 2 way ANOVA).  ‘In’ is in-migration,
‘Res’ is residence, ‘Out’ is out-migration, ‘Dest’ is destination (see Table 2-2) rate units
are km*day-1, and time units are days.

Tag # Start in In time In rate In/res Res time Res/out out rate out time End out Out time Dest
26 17-Jun 61 1.64 17-Aug 51 7-Oct 8.08 12 19-Oct 12 1
27 29-Jun 67 1.49 4-Sep 8 12-Sep 6.94 9 21-Sep 9 1
28 29-Jun 52 1.92 20-Aug 34 23-Sep 5.00 20 13-Oct 20 1
29 5-Jul 51 1.96 25-Aug 37 1-Oct 5.11 19 20-Oct 19 1
31 4-Jul 55 1.82 28-Aug 34 1-Oct 6.47 15 16-Oct 15 1
34 13-Jul 55 1.82 6-Sep 28 4-Oct 24.00 2 6-Oct 2 1
38 18-Jul 42 2.38 29-Aug 36 4-Oct 26.25 2 6-Oct 2 1
43 20-Jul 36 2.78 25-Aug 37 1-Oct 11.50 5 6-Oct 5 1
21 14-Jun 61 1.64 14-Aug 44 27-Sep 5.35 10 7-Oct 10 1
55 14-Jun 61 1.64 14-Aug 47 30-Sep 7.64 7 7-Oct 7 1
56 15-Jul 30 3.33 14-Aug 57 10-Oct 53.50 1 11-Oct 1 1
59 15-Jul 38 2.63 22-Aug 36 27-Sep 4.86 11 8-Oct 11 1
62 15-Jul 38 2.50 22-Aug 43 4-Oct 12.13 4 8-Oct 4 1
64 10-Jul 45 2.22 24-Aug 32 25-Sep 3.82 14 9-Oct 14 1
67 10-Jul 47 2.13 26-Aug 32 27-Sep 4.46 12 9-Oct 12 1
68 10-Jul 47 2.13 26-Aug 1
71 10-Jul 55 1.82 3-Sep 23 26-Sep 4.46 12 8-Oct 12 1
73 3-Jul 62 1.61 3-Sep 28 1-Oct 13.38 4 5-Oct 4 1
75 15-Jul 50 2.00 3-Sep 1
76 3-Jul 71 1.41 12-Sep 13 25-Sep 5.94 9 4-Oct 9 1
80 18-Jun 87 1.15 13-Sep 1
81 7-Jun 102 0.98 17-Sep 1
22 28-Jun 67 1.12 3-Sep 24 27-Sep 19.00 2 29-Sep 2 2
23 28-Jun 71 1.06 7-Sep 23 30-Sep 12.50 4 4-Oct 4 2
25 29-Jun 47 1.60 15-Aug 53 7-Oct 11.17 6 13-Oct 6 2
33 5-Jul 30 2.50 4-Aug 54 27-Sep 6.82 11 8-Oct 11 2
36 18-Jul 57 1.21 13-Sep 30 13-Oct 8.83 3 16-Oct 3 2
49 3-Sep 27 0.46 30-Sep 8 8-Oct 14.40 5 13-Oct 5 2
10 14-Jun 70 1.07 23-Aug 36 28-Sep 3.17 9 7-Oct 9 2
20 14-Aug 32 2.34 15-Sep 31 16-Oct 28.50 1 17-Oct 1 2
57 14-Jun 74 1.01 27-Aug 2
61 3-Jul 44 1.70 16-Aug 42 27-Sep 3.17 9 6-Oct 9 2
65 3-Jul 63 1.19 4-Sep 25 29-Sep 3.17 9 8-Oct 9 2
72 10-Jul 46 1.63 25-Aug 30 24-Sep 2.38 12 6-Oct 12 2
74 10-Jul 62 1.11 10-Sep 29 9-Oct 11.25 2 11-Oct 2 2
77 15-Jul 31 2.42 15-Aug 2
78 15-Jul 59 1.27 12-Sep 2
79 15-Jul 36 2.08 20-Aug 36 25-Sep 7.13 4 29-Sep 4 2
24 27-Jun 68 1.25 3-Sep 32 5-Oct 0.74 51 25-Nov 51 3
30 2-Jul 56 1.52 27-Aug 31 27-Sep 4.21 19 16-Oct 19 3
37 18-Jul 44 1.70 31-Aug 3
39 19-Jul 47 2.02 4-Sep 26 30-Sep 18.25 4 4-Oct 4 3
40 19-Jul 52 1.63 9-Sep 21 30-Sep 1.53 19 19-Oct 19 3
41 19-Jul 31 2.42 19-Aug 46 4-Oct 32.50 1 5-Oct 1 3
42 19-Jul 32 2.66 20-Aug 45 4-Oct 3.64 22 26-Oct 22 3
44 20-Jul 33 2.88 22-Aug 32 23-Sep 4.77 11 4-Oct 11 3
46 20-Jul 31 2.58 20-Aug 20 9-Sep 6.25 6 15-Sep 6 3
30 7-Aug 37 2.62 13-Sep 3
39 14-Aug 30 2.83 13-Sep 13 26-Sep 3.50 11 7-Oct 11 3
40 14-Aug 27 3.15 10-Sep 16 26-Sep 1.93 20 16-Oct 20 3
58 18-Jun 58 1.67 15-Aug 42 26-Sep 4.21 12 8-Oct 12 3
60 18-Jun 60 1.00 17-Aug 39 25-Sep 1.93 7 2-Oct 7 3
66 3-Jul 52 1.63 24-Aug 3
69 10-Jul 44 2.20 23-Aug 15 7-Sep 2.20 23 30-Sep 23 3
32 5-Jul 60 1.00 3-Sep 31 4-Oct 17.50 1 5-Oct 1 4
35 18-Jul 62 1.13 18-Sep 11 29-Sep 5.50 5 4-Oct 5 4
45 20-Jul 47 1.28 5-Sep 25 30-Sep 9.50 4 4-Oct 4 4
4 3-Jul 34 1.76 6-Aug 53 28-Sep 1.69 8 6-Oct 8 4
22 12-Jul 35 1.86 16-Aug 40 25-Sep 2.06 9 4-Oct 9 4
35 14-Aug 20 3.90 3-Sep 23 26-Sep 2.63 12 8-Oct 12 4
51 6-Jun 90 0.67 4-Sep 20 24-Sep 0.90 15 9-Oct 15 4
53 14-Jun 86 0.70 8-Sep 13 21-Sep 4
54 14-Jun 70 0.86 23-Aug 47 9-Oct 1.93 7 16-Oct 7 4
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Chapter 3 - An evaluation of genetic differentiation between two bull

trout (Salvelinus confluentus) spawning streams in the upper Duncan

River using microsatellites.

3.1 Introduction

Most species are structured into semi-isolated reproductive populations.  Such

populations tend to diverge from other populations through selection or genetic drift

(Slatkin 1987).  Preserving this genetic diversity is considered paramount for conservation

(Moritz 1994; Avise 1995).  Understanding the spatial scale over which such genetic

population structure occurs is, therefore, an important conservation priority.  The

geographic scale over which species are divided into populations is a function gene flow.

In general, a small amount of gene flow between otherwise separate populations will

counter genetic divergence due to selection or drift (Wright 1931; Hartl and Clark 1989;

Mills and Allendorf 1996).  The amount of gene flow is related to barriers to dispersal, a

species’ inherent dispersal ability and reproductive site fidelity (Waples 1998; Bohonak

1999).

The distance animals can move obviously affects population structure.  For

populations in close proximity, relative to dispersal ability, there should be more gene flow

than between distant populations.  This is ‘isolation by distance’ (Wright 1943; Slatkin

1993).  Barriers to migration and gene flow enhance isolation among populations,

resulting in a finer spatial scale over which species are structured into genetically distinct

populations.   In marine organisms, where barriers to gene flow are slight (e.g. Palumbi et

al. 1997), the amount of genetic differentiation between populations is generally small

(Ward et al. 1994; Waples 1998).  In contrast, where physical barriers to movement are

more common, such as among populations of freshwater fish, genetic differentiation

among populations is stronger (Ward et al. 1994).

The degree to which animals show fidelity to natal sites also has important

implications for the level of gene flow and resulting genetic population structure.

Reproductive site fidelity, or homing, is an adaptive trait, because it ensures that
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reproduction occurs where conditions suitable for survival, growth and reproduction

occurred in the past (Lindsey et al. 1959; Northcote 1997).  Thus, the spatial scale of

genetic divergence among populations should be finer in animals that home to their exact

birth site, than, for example, animals that home to the general natal area.

The processes that affect population structure, and divergence among

populations specifically, have been well studied in salmonid fishes.  In salmonid fishes,

particularly Pacific salmon, there is evidence that fidelity to natal areas, or homing, results

in fine scale population divergence (Scheer 1939; Banks 1969; McIsaac and Quinn 1988;

Quinn and Dittman 1990; Taylor 1991).  Distinct populations are detectable, through

morphological, behavioural or genetic differences, in salmonids from streams in close

geographic proximity (Quinn et al. 1987; Taylor 1991; Angers et al. 1995), within the

same stream (Taft and Shapovalov 1938; Tallman and Healey 1994; Costello and Taylor

unpubl. MS), or even within the same stream reach (Hansen et al. 1997; Carlsson et al.

1999).  Homing may be especially important for semelparous Pacific salmon, in that it

increases the chance that their only reproduction is successful.  Clearly homing is not

perfect in Pacific salmon, since much of their current range was recolonised following

deglaciation (Quinn and Dittman 1990).  Rates of straying among natal streams can be

high quite high (>50%) in some species of Pacific salmon (Shaklee and Varnavskaya 1994;

McElhany et al. 2000), especially in fish of hatchery origin (Quinn 1993).  As suggested

previously, less accurate homing will tend to increase the geographic area of populations.

The bull trout is an iteroparous salmonid native to north western North America

(Haas and McPhail 1991).  Because of population declines in the southern portion of its

range (Barry 1999), bull trout are the subject of conservation concern.   These declines are

usually attributed to habitat loss, habitat fragmentation and exotic species introductions

(Goetz 1984; Rieman and McIntyre 1993; Watson and Hillman 1997).  To help define the

spatial scale at which conservation efforts should be focused (Vogler and DeSalle 1994), it

is important to define the geography of distinct bull trout populations.  Unfortunately, the

strength of natal stream fidelity is not known in bull trout (McPhail and Murray 1979;

Goetz 1984; McPhail and Baxter 1996).
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The spatial scale of genetic population structure in bull trout has been studied at

three different levels: a species wide level (Spruell and Allendorf 1997; Taylor et al. 1999),

large regional levels (Leary et al. 1993; Spruell and Allendorf 1997; Williams et al. 1997;

Taylor et al. 1999; Latham and Taylor in press; Costello and Taylor unpubl. MS), and

smaller local or small watershed levels (Spruell et al. 1999; Costello and Tayor unpubl.

MS).  Over the range of the species, both mitochondrial DNA (mtDNA) and microsatellite

studies (Spruell and Allendorf 1997; Taylor et al. 1999) suggest that bull trout are broadly

divided into a coastal and an interior group.  Subdivision on this broad geographic scale is

attributed to historical isolation in two glacial refugia south of the Cordilleran ice sheet

(Taylor et al. 1999).  At a regional level, below that of large drainages like the Columbia

or Fraser rivers, bull trout are structured into clusters of similar groups within regions that

are differentiated from other such groups (Leary et al. 1993; Spruell and Allendorf 1997;

Williams et al. 1997; Taylor et al. 1999; Latham and Taylor in press; Costello and Taylor

unpubl. MS).  At these two relatively broad scales, bull trout generally display low levels

of genetic variability.  This low variability is attributed to historical demographic processes

such as founder effects resulting from postglacial dispersal (Leary et al. 1993) and more

recent bottlenecks (Spruell and Allendorf 1997; Taylor et al. 1999; Costello and Taylor

unpubl. MS).

Two earlier studies characterized genetic population structure at the level of

individual watersheds.  Spruell et al. (1999) examined Lightning Creek, a tributary to the

Clark Fork River in Idaho, that drains an area of 220 km2.  Costello and Taylor (unpubl.

MS) examined population structure within and between Peace and Kootenay river

tributaries in British Columbia and Red Deer and Oldman rivers in Alberta.  The spatial

scales that Costello and Taylor (unpubl. MS) examined within river systems ranged from

roughly 300 to 3000 km2.   In all but the case of one Kootenay River tributary (Wigwam

River) both studies found significant subpopulation variation within watersheds (Spruell et

al. 1999; Costello and Taylor unpubl. MS).

In Chapter 2, I presented telemetry evidence that over a two year period some

bull trout in the upper Duncan River switched spawning streams.  This suggests that bull

trout may not home to specific streams in the upper Duncan River system.  The upper
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Duncan River drains an area of nearly 1300 km2.  As discussed in Chapter 2, the

observation that some bull trout change streams does not necessarily mean successful

reproduction at both locations.  I did not confirm spawning at all locations.  Also, because

the natal stream(s) of the radio-tagged bull trout are unknown, I cannot use the data in

Chapter 2 to make direct inferences about stream fidelity, other than noting that fish

switched migration destinations over two years.  If, over their lives, bull trout switch

spawning streams this should tend to increase the geographic area over which bull trout

remain a single, genetically homogeneous population.

I used microsatellites to compare two spawning tributaries within the upper

Duncan River.  The purpose was to test the prediction (based on the telemetry data) that

bull trout in the upper Duncan system are a single genetic population.  Microsatellites are

selectively neutral nuclear loci that show high levels of allelic variation and, as such, they

are useful for differentiating closely related species, populations, or even individuals (Jarne

and Lagoda 1996).  I collected microsatellite allele frequency data from Houston Creek

and the Westfall River.  These streams were chosen because of their relatively high use by

radio-tagged bull trout (Chapter 2) and the observation that bull trout spawned in both

streams. The mouths of Houston Creek and Westfall River are separated by approximately

30 km, and their primary spawning areas (identified from telemetry) are separated by

approximately 60 km.  I used the allele frequency data to estimate the level of genetic

differentiation between Houston Creek and Westfall River to address the following

questions:

• Do bull trout in different spawning streams in the upper Duncan River belong to

genetically distinct populations?

•  How does spawning stream switching (as estimated from telemetry) compare to

estimates of gene flow derived from microsatellite data?

Based on the suggestion of high gene flow from my telemetry results (Chapter 2),

and despite the results of genetic studies at similar spatial scales, I predict that bull trout in

Houston Creek and Westfall River represent a single, genetically homogeneous

population.
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3.2 Methods

Tissue collection

I captured juvenile bull trout by backpack electrofishing at sites in Houston Creek

and the Westfall River. The relatively wide spacing of sample locations in Westfall R. (Fig.

3-1) compared to those in Houston Cr. (Fig. 3-2) is a function of access in the two

systems.  A road extends along the length of Westfall R. and allows relatively easy access.

We accessed all but one site in Houston Cr. by foot from the confluence of the creek and

the upper Duncan River mainstem.  One site in Houston Cr. was accessed by helicopter.

At each site, a GPS coordinate was recorded, and a single electrofishing pass made

through suitable juvenile habitat.  I focused on side channels, woody debris and channel

margins (Baxter and McPhail 1996).  Electrofishing continued at each site until the target

numbers of individuals were captured (see below).  The type of tissue collected varied as a

function of fish size.  Tissue samples of young-of-the-year bull trout consisted of the entire

animal.  For juveniles > 55 mm, the adipose fin was removed.  In all cases, the tissue was

placed in an individually numbered snap top centrifuge tube containing 95% ethyl alcohol

and refrigerated until processed in the laboratory.  No mature bull trout were encountered

during this sampling.  I separated tissue samples from each stream into three age classes

based on fork length (FL) frequency, and in this way grouped samples for further analysis.

In Westfall R., bull trout < 54 mm were considered 0+, 1+ from 54 to 93 mm, and 2+

from 105 to 155 mm (Fig. 3-3).  In Houston Cr., I considered fish < 60 mm 0+, from 60

to 100 mm 1+, and those > 110 mm 2+ (Fig. 3-4).  By setting age breaks at these lengths,

I avoided including samples that were difficult to clearly place in a specific age category.  I

attempted to reach a sample size of 20 individuals from each age class in each stream, but

2+ bull trout were rare in my samples from Houston Cr.  Most of the tissue sampling

occurred in 1997; however, I used four 1+ samples collected from Houston Cr. in 1996 to

bolster the sample size in the 2+ age class from 1997.

Allendorf and Phelps (1981) cautioned specifically against attempting to estimate

population structure from juveniles, because allele frequencies estimated from juveniles

may not reflect the allele frequencies of adults.  In a study evaluating the problem of
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relatedness when sampling juveniles for molecular analysis, Hansen et al. (1997) found

that young-of-the-year brown trout (Salmo trutta) captured within short stream sections

came from a small number of full-sibling families.  This biased estimates of allele

frequencies.  To reduce the likelihood of sampling families, I used no more than three

young-of-the-year bull trout from each sampling site, and maintained a minimum of 250 m

between all sample sites.  Although Hansen et al. (1997) found that the problem of

sampling families was not apparent in age classes older than young-of-the-year, I also used

no more than three fish of older age classes from each sample site.



44

Figure 3-1.  Juvenile bull trout tissue sampling locations (n = 14) in Westfall River.
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Figure 3-2.  Juvenile bull trout tissue sampling locations (n = 13) in Houston Creek.
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Figure 3-3.  Fork length frequency of juvenile bull trout captured in the Westfall River, 15 July –
12 August 1997 (n = 167).
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Figure 3-4. Fork length frequency of juvenile bull trout captured in the Houston Creek, 20 – 22
August 1997 (n = 104).
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Microsatellite amplification

Total DNA was extracted as described by Taggart et al. 1992 and Taylor et al.

1996.  Briefly, I suspended tissue in 2 mM EDTA and digested with Pronase (24 h at 37
oC with rotation) and RNAase (1 h at 37 oC).  The DNA was extracted using standard

phenol:chloroform protocols followed by ethanol precipitation.  I resuspended the

extracted DNA in TE buffer and quantified the concentration by spectrophotometry.  I

stored extracted DNA samples at -20 oC.

From extracted DNA samples, nine microsatellite loci were amplified separately

with the polymerase chain reaction (PCR).  The microsatellite loci I used came from two

sources: seven were isolated from other species (Ogo 2 – Olsen et al. 1998; Omy 77 –

Morris et al. 1996; Ots 101 – Nelson and Beacham 1999; Ssa 197 – O'Reilly et al. 1996;

Ssa 311 and Ssa 456 – Slettan et al. 1995; Sfo 18 - Angers et al. 1995) and two were

isolated from a bull trout genomic library (Sco 19 and 23; E.B. Taylor, unpubl. data).  All

of the loci isolated from other species are polymorphic in populations of bull trout in

British Columbia and Montana (Spruell et al. 1999; Costello and Taylor unpubl. MS).

One primer from each primer pair was P32 end-labeled, using a Polynucleotide

Kinase kit (New England Biolabs).  Locus specific PCR protocols are appended.  All PCR

reactions were run on a MJ Research PTC-100 thermocycler.  All samples were amplified

in 10 µL reaction volumes containing: 100 ng template DNA and 0.5 U Taq DNA

polymerase (Gibco/BRL) in 10 µl of 20mΜ Tris-HCl (pH 8.4), 50 mΜ KCl, 1.5mΜ

MgCl2, 800 µΜ dNTPs, 0.5 pmol of  [γ32P]-dATP labeled forward primer, 2.5 pmol

unlabelled forward primer, and 6 pmol of reverse primer in dH2O.   Four of the loci (Ogo

2, Ots 101, Sco 19, Ssa 311) also included 10% dimethyl sulfoxide (DMSO) in the

reaction volume (Winship 1989).   Amplification products were size fractionated on 6%

denaturing polyacrylamide gels and autoradiographed.  Alleles sizes were determined

using a size standard (M13 sequence) run in two or more lanes of each gel.

Data analysis

Allele frequencies, heterozygosity (both observed and expected), and tests for

departures from Hardy-Weinburg Equilibrium (HWE) were calculated using TFPGA 1.3
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(Miller 1997) for all loci scored by age class and stream.  I excluded monomorphic loci

from subsequent analyses.  I used GENEPOP 3.2 (Raymond and Rousset 1995) to test for

genotypic linkage disequilibrium among loci and to calculate across loci pairwise exact

tests of genetic differentiation based on allele frequencies among age classes within

streams.  In all simultaneous statistical tests, I used the sequential Bonferroni correction

(Rice 1989) to adjust alpha values.

To estimate the amount of genetic differentiation between Houston Cr. and

Westfall R., I used TFPGA and RST CALC 2.2 (Goodman 1997) to calculate locus

specific and across loci estimates of FST and RST, respectively, for samples pooled by

stream.  Allele data were entered as the number of repeat units (with the smallest allele

size being one repeat unit) for calculation of RST estimates using RST CALC.  I also

calculated locus specific and across loci exact tests of genetic differentiation based on

allele frequencies for samples pooled by stream (TFPGA).

As an alternate test of differentiation between Houston Cr. and Westfall R., I

calculated hierarchical structuring of genetic variance using analysis of molecular variance

(AMOVA; Excoffier et al. 1992) with ARLEQUIN 2.0 (Schneider et al. 2000).  I used

only a FST based genetic variance matrix for AMOVA.  In addition, I calculated AMOVA

for both age structured samples by stream, and for samples pooled by stream.

I calculated the number of migrants from the pooled by stream across loci

estimate of FST (FST ≈ 1/(4Nem + 1) - Wright 1943; Whitlock and McCauley 1999) to

compare qualitatively with the magnitude of movement (migration) estimated from

telemetry (Chapter 2).  I used bootstrapped 95% confidence intervals of the FST estimate

to calculate approximate confidence intervals of the migration estimate.
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3.3 Results

Microsatellite loci

Of the nine loci I amplified, four were polymorphic (95% criteria; Hartl and Clark

1989), two had rare second alleles (polymorphic at the 99% criteria), and three were

monomorphic (Table 3-1).  I will use the 99% criteria as my definition of polymorphic,

meaning that the most common allele is at a frequency ≤ 0.99 (Hartl and Clark 1989).  A

composite autoradiograph of the six polymorphic loci is presented in Figure 3-5.  For the

polymorphic loci, the mean number of alleles is 3.7, but over all nine scored loci, the mean

is 1.6.  Westfall River samples had two private alleles (Ogo 2 – 148bp and Ssa 456 –

159bp) that occurred at frequencies of 0.008 and 0.017, respectively.  Although I found all

loci pairs in linkage equilibrium across stream level sample groups (P ≥ 0.164), within age

class samples P = 0.027 for the Ssa 197 – Sco 19 pair comparison in the Houston Creek

0+ sample group.  After sequential Bonferroni correction (Rice 1989; 15 simultaneous

tests, α = 0.003), this P value is not significant.  Sample sizes and number of alleles by

specific stream, age class group, and locus are presented in Table 3-2.  Observed and

expected heterozygosities are presented in Table 3-2.  Estimates of P values for tests of

HWE indicated no significant departures from equilibrium allele frequencies across all age

sample groupings (P ≥ 0.056; Table 3-2).  The mean expected heterozygosity over all nine

scored loci by age class group is 0.220 (min. 0.00 – max. 0.770).  Over the six

polymorphic loci only, the mean expected heterozygosity is 0.330 (min. 0.00 - max. 0.770;

Table 3-2).  Allele frequency plots for the six polymorphic loci by age class group and

stream are appended.
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Figure 3-5.  A composite autoradiograph of the six polymorphic microsatellite loci scored in bull
trout from Houston Creek and the Westfall River.  Sample lanes are indicated with an
‘S’.  Allele sizes (bp) are indicated (arrows).
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Table 3-1.  Allele size (bp) and frequency (freq.) over all bull trout samples for nine microsatellite
loci.

Locus Allele
1 2 3 4 5 6 7

Ogo  2 bp 146 148 152 154 156 170
freq. 0.315 0.005 0.095 0.257 0.293 0.036

Omy  77 bp 279 283 287
freq. 0.086 0.054 0.860

Ots  101 bp 100
freq. 1.000

Sco  19 bp 174 188 194 200 202 204 206
freq. 0.068 0.064 0.109 0.682 0.050 0.018 0.009

Sco  23 bp 193 195
freq. 0.559 0.441

Sfo  18 bp 150
freq. 1.000

Ssa  197 bp 119 123
freq. 0.050 0.950

Ssa  311 bp 120
freq. 1.0000

Ssa  456 bp 157 159
freq. 0.991 0.009



52

Table 3-2. Sample size (n), number of alleles amplified (A), and observed (H (obs)) and expected
(H (exp)) heterozygosity values by stream, age class group, and locus, as well as
estimated probability values (P) of HWE tests.

Locus Westfall Houston
0+ 1+ 2+ 0+ 1+ 2+

Ogo  2 n 20 20 20 20 20 11
A 5 4 6 5 4 4
H (obs) 0.900 0.800 0.750 0.700 0.700 0.636
H (exp) 0.734 0.696 0.770 0.744 0.671 0.665
P 0.913 0.730 0.721 0.271 0.423 0.105

Omy  77 n 20 20 20 20 20 11
A 3 3 3 3 3 2
H (obs) 0.200 0.350 0.150 0.250 0.350 0.273
H (exp) 0.184 0.301 0.141 0.304 0.304 0.236
P 1.000 1.000 1.000 0.056 1.000 1.000

Ots  101 n 20 20 20 20 20 10
A 1 1 1 1 1 1
H (obs) - - - - - -
H (exp) - - - - - -
P - - - - - -

Sco  19 n 20 20 20 20 20 10
A 6 6 6 5 4 2
H (obs) 0.550 0.550 0.500 0.600 0.350 0.200
H (exp) 0.596 0.600 0.486 0.616 0.306 0.185
P 0.266 0.206 0.733 0.096 1.000 1.000

Sco  23 n 20 20 20 20 20 11
A 2 2 2 2 2 2
H (obs) 0.450 0.600 0.450 0.500 0.600 0.546
H (exp) 0.469 0.495 0.399 0.420 0.455 0.496
P 1.000 0.659 1.000 0.618 0.326 1.000

Sfo  18 n 20 20 20 20 20 10
A 1 1 1 1 1 1
H (obs) - - - - - -
H (exp) - - - - - -
P - - - - - -

Ssa  197 n 20 20 20 20 20 10
A 2 1 2 2 2 1
H (obs) 0.200 - 0.150 0.150 0.050 -
H (exp) 0.180 - 0.139 0.139 0.049 -
P 1.000 - 1.000 1.000 1.000 -

Ssa  311 n 20 20 20 20 20 11
A 1 1 1 1 1 1
H (obs) - - - - - -
H (exp) - - - - - -
P - - - - - -

Ssa  456 n 20 20 20 20 20 11
A 1 2 2 1 1 1
H (obs) - 0.050 0.050 - - -
H (exp) - 0.049 0.049 - - -
P - 1.000 1.000 - - -
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Genetic population structure

I found little evidence of genetic divergence between Houston Creek and Westfall

River bull trout with the microsatellite loci I amplified.  After sequential Bonferroni

correction, no pairwise age class comparison had significantly differing allele frequencies

(P ≥ 0.011, 15 simultaneous tests, α = 0.003 - Table 3-3), so I pooled samples by stream

for further analysis.  Locus-specific estimates of FST and RST (Table 3-4) again suggest

little genetic differentiation between streams.  The across loci estimates of FST and RST are

0.010 and 0.006 respectively.  The bootstrapped 95% confidence intervals of both across

loci FST and RST estimates include zero (Table 3-4).  The Sco 23 specific estimates are

higher than the other loci (Table 3-4) but generally there is concordance among the

polymorphic loci I scored.  The number of effective migrants (Nem) calculated from the

across loci estimate of FST is 24.8.   The approximate 95% confidence intervals are 7.2<

Nem< ∞.

The between stream exact test of population differentiation across all loci is not

significant (P = 0.284; Table 3-5).  The probability value estimated for the Sco 23 specific

exact test, P = 0.011, is not significant after Bonferroni correction (6 simultaneous tests, α

= 0.008; Table 3-5).

Table 3-3. Estimated probability values of exact tests of population differentiation from allele
frequencies across loci between all age class groups (0+ - 2+) from Houston Creek (H)
and Westfall River (W).

Age group H0+ H1+ H2+ W0+ W1+
H1+ 0.011
H2+ 0.143 0.311
W0+ 0.910 0.147 0.403
W1+ 0.475 0.387 0.716 0.566
W2+ 0.050 0.015 0.238 0.391 0.171
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Table 3-4. Estimates of FST and RST within and across loci for pooled age class samples by stream.
Confidence intervals (C.I.) for across loci estimates are included.

Locus Fst Rst
Ogo  2 -0.006 -0.009
Omy  77 -0.001 -0.002
Sco  19 0.007 -0.002
Sco  23 0.045 0.044
Ssa  197 -0.005 -0.005
Ssa  456 0.007 0.008
Across loci estimate 0.010 0.006
Across loci 95% C.I. 0.034>Fst>-0.005 0.168>Rst>-0.001

Table 3-5. Estimated probability values of exact tests of population differentiation, based on allele
frequency differences (Infinite Alleles Model), between Houston Creek and Westfall
River samples (pooled across age classes) within loci, and across all loci (bold).  ‘SE’ is
the standard error of the estimate.

Locus P value SE
Ogo  2 0.694 0.016
Omy  77 0.547 0.009
Sco  19 0.480 0.015
Sco  23 0.011 0.002
Ssa  197 0.762 0.002
Ssa  456 0.503 0.003
Across loci estimate 0.284

Partitioning of genetic variation (AMOVA) for both pooled and separate age

classes within streams are presented in Table 3-6.  I present the AMOVA for separate age

classes, despite the lack of pairwise differences between them, to compare the proportion

of genetic variance partitioned among age classes within streams and between streams.

Pooling age classes resulted in a 0.7% increase in genetic variance partitioned to the

between stream partition (0.2 to 0.9%, Table 3-6 and Fig. 3-6).  The between stream

variance partition of the AMOVA is significant when age classes are pooled by stream (P

= 0.036) but not when age classes are separate (P = 0.416; Table 3-6).  All other variance

partitions in the AMOVA are significant (Table 3-6).
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Table 3-6.  Analysis of Molecular Variance (AMOVA) partitioning for both pooled and separate
age classes by stream.  Estimated probability values associated with variance partitions
are included. ‘SE’ is the standard error of the estimate.

AMOVA Partitions
pooled over age classes by stream 

Within streams 99.1%
Between streams 0.9%

P value estimate (SE) 0.036 (0.006)
separate age classes 

Within age class 97.6%
P value estimate (SE) 0.001 (0.001)

Among age classes within streams 2.2%
P value estimate (SE) 0.002 (0.001)

Between streams 0.2%
P value estimate (SE) 0.416 (0.014)

3.4 Discussion

I was unable to collect many 2+ bull trout from Houston Creek.  The apparent

lack of 2+ bull trout in Houston Cr. probably reflects the smaller portion of the stream

sampled (Fig. 3-1 vs. Fig. 3-2) and lower total catch, because the relative frequency of

different age classes between Houston Cr. and Westfall R. appears similar (Figs. 3-3 and

3-4).  The apparent size differences between the same age classes from the two streams

(Figs. 3-3 and 3-4) probably represent differences in sampling date (> 30 d in most cases)

rather than stream specific growth rates.

More than half of the microsatellite loci amplified (Table 3-1) were monomorphic

by the 95% criterion.  I used these loci specifically because they were polymorphic in

other populations of bull trout (Spruell et al. 1999; Costello and Taylor unpublished

manuscript).   There were no significant departures from HWE.  Heterozygosities are low

when averaged over loci (mean across loci = 0.220; Table 3-2), but this appears to be

normal in bull trout (Spruell and Allendorf 1997), and as mentioned previously, the

general finding of low genetic variability in bull trout has been attributed to historical

demographic processes (Leary et al. 1993; Spruell and Allendorf 1997; Taylor et al. 1999;

Costello and Taylor unpubl. MS).

Although not significant, the estimated P values of pairwise exact tests between

Houston Cr. 0+ and Houston Cr. 1+ (H0+ vs. H1+), H0+ and Westfall R. 2+ (H0+ vs.
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W2+) and H1+ vs. W2+ samples (Table 3-3) suggest some allele frequency differences.  In

the case of the H0+ vs. H1+ comparison, the loci driving the differences were Sco 19 and

Ogo 2.  These two loci have the most allelic diversity in my samples (Sco 19 – seven

alleles, Ogo 2 – six alleles; Table 3-1), and the difference suggested by the low estimated P

value (Table 3-3) probably result from my within age group sample sizes.  My sample

sizes are certainly of issue at the individual age class level, particularly in the 2+ age class

from Houston Cr. (Table 3-2).  For the other two comparisons with low estimated P

values (H0+ vs. W2+ and H1+ vs. W2+; Table 3-3), the locus driving the result was Sco

23 (two alleles; Table 3-1), suggesting that my sample sizes were not as important. After

Bonferroni correction (Rice 1989), none of the pairwise age class exact tests were

significantly different (Table 3-3).

In calculated estimates of genetic differentiation, FST is consistently higher than

RST (Table 3-4).  The microsatellite allele sizes identified in Houston Cr. and Westfall R.

bull trout are consistent with those identified by other bull trout studies with the same loci

(Spruell et al. 1999; Taylor and Costello 1999; Latham and Taylor in press; Costello and

Taylor unpublished manuscript).  Because the same sized alleles exist at the same loci

elsewhere in the range of bull trout, this suggests that they did not arise via mutation in

Houston Cr. and Westfall R.  If microsatellite alleles did not arise by mutation, and instead

arrived when the area was recolonized, the estimate of RST is not as good an indicator of

genetic differentiation as FST.  Taylor and McPhail 2000 argue that demographic processes

(random genetic drift, founder effects and bottlenecks) likely outweigh the effect of

mutation on genetic differentiation in threespine stickleback (Gasterosteus aculeatus)

postglacially recolonizing BC lakes from the sea.  With evidence for the importance of the

same demographic processes in bull trout (Leary et al. 1993; Spruell and Allendorf 1997;

Taylor et al. 1999; Costello and Taylor unpubl. MS), mutation likely plays a minor role in

the microsatellite differentiation I found.

There is little genetic differentiation between juvenile bull trout sampled from

Houston Cr. and Westfall R.  The Sco 23 locus (Table 3-4) appears to drive the only

differences I found between the two streams.  Besides Sco 23, there is good concordance

across the loci I scored: they all indicate no differentiation between the streams (Table 3-
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4).  These results are reflected in the non-significant exact test of differentiation based on

allele frequencies across loci (P = 0.284; Table 3-5).

The amount of genetic differentiation I found (Table 3-4) is very small compared

to estimates from other fish species (Ward et al. 1994; Waples 1998), particularly other

freshwater fish.  My estimate of FST (0.01) between Houston Cr. and Westfall R. is six

times less than the mean for anadromous fishes (mean marine FST estimate = 0.06), and

more than an order of magnitude lower than the mean estimate for freshwater fishes (mean

freshwater FST estimate = 0.222; as reviewed by Ward et al. 1994).  Because of fewer

strong barriers to dispersal, marine organisms generally have lower levels of genetic

differentiation across their distributions (e.g. Palumbi et al. 1997; reviewed by Waples

1998).  The low mean estimate of FST from the studies reviewed by Ward et al. (1994)

may be because many were surveys of allozyme differentiation, which usually have lower

resolution of genetic variation than microsatellites (Ferguson et al. 1995; Jarne and

Lagoda 1996).  Most of the loci I used had low allelic diversity (only two loci had > 4

alleles; Table 3-1) compared to many microsatellite systems (Hedrick 1999; Nelson and

Beacham 1999); however, I still found diversity, just very little differentiation between

Houston Cr. and Westfall R.

Another way to evaluate my result is to compare it with the amount of

differentiation expected between isolated populations diverging via genetic drift since

founding from a common source.  Imagine that Houston Creek and Westfall River

represent two such populations.  Assuming discreet generations of five years, no gene

flow between populations of constant effective population size (Ne = 300), and that

colonization occurred 10,000 years ago, FST ≅ 0.964 based on genetic drift alone (Nei and

Chakravarti 1977 as cited in Waples 1998).

I also used AMOVA (Table 3-6) to quantify genetic divergence between Houston

Cr. and Westfall R bull trout.  Because of the previous discussion of the applicability of

RST based measures, I only calculated the AMOVA with FST based distances (Excoffier et

al. 1992).  With pooled age classes by stream, a significant portion (0.9%, P = 0.036;

Table 3-6) of genetic variance is partitioned to differences between streams.  Although

sample sizes are small, I presented the AMOVA analysis with separate age classes (Table
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3-6), specifically to compare the amount of genetic variation attributed to the between

stream partition relative to the among age classes within streams partition (Fig. 3-6).  Just

over 2 % (P = 0.002) of the total variation is attributed to the among age class partition in

the analysis (Table 3-6).  The pairwise among age classes (Table 3-1) and between stream

exact test (Table 3-5) are both contradicted by these AMOVA results.  This may reflect a

difference in power between the two methods.  Despite this apparent discrepancy, the

amount of genetic differentiation between Houston Cr. and Westfall R. is still small.  Less

than one percent of genetic variance is explained by between stream differences.  This

ANOVA result, along with FST estimates and exact tests of population differentiation,

suggest that the spatial scale of population divergence in upper Duncan River bull trout is

larger than the spawning stream.

As discussed in the methods section, a problem with this general result is the use

of allele frequency data collected from juveniles.  I replicated my samples over age classes

(time), took precautions against sampling families within a year, and used multiple loci in

an attempt to alleviate (as suggested by Hansen et al. 1997) the biases introduced by the

Allendorf-Phelps effect (Allendorf and Phelps 1981; Waples 1998).  As detailed by Waples

(1998), the net bias introduced by the sampling of juveniles instead of the adult population

would be to inflate estimates of population subdivision.  My data, with low differentiation

between age classes and in pooled between stream comparisons, suggest that the

Allendorf-Phelps effect has not been important in my analysis.

Sample sizes are also a concern in the interpretation of the general lack of

between stream differences.  The θ estimator of FST I used (Weir and Cockerham 1984)

adjusts population specific estimates by sample size; however, in one age class group

(Houston Cr. 2+) my mean sample size over loci was 10.6 individuals (Table 3-2).  When

two of four polymorphic loci used have more than five alleles, this sample size is not

sufficient.  My pooled age class between stream analyses are based on mean sample sizes

over six loci of 50.6 individuals from Houston Cr. and 60 individuals from Westfall R.

Utter et al. 1992, describe a similar result when comparing chinook salmon

(Oncorhynchus tshawytscha) populations in the Snake and Klamath rivers.  Originally,

attempts to differentiate these two groups of chinook were not successful using allozyme
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markers (Utter et al. 1992).  Only later, when more variable allozyme loci were used, did

the two populations become distinguishable (Utter et al. 1992).  With additional loci,

perhaps more differentiation between Houston Cr. and Westfall R. bull trout would be

apparent; although, in terms of the pooled age class test, my sample size (n ≥ 50 per locus

and stream) and number of loci (six polymorphic by the 99% criteria) are greater than

many similar studies (e.g. Spruell et al. 1999; Latham and Taylor in press; Costello and

Taylor unpubl. MS).

Finally, a potential problem with attempting to define population structure (or

lack thereof) using highly variable markers like microsatellites was raised by Hedrick

(1999).  In this study, with little evidence of population differences, this lack of

differentiation may only reflect these specific microsatellite markers.  The problem is that

other loci, potentially loci defining adaptively significant traits, may give rise to

biologically meaningful differences (Hedrick 1999).  I tried to minimize this possibility by

amplifying nine loci that were known to be polymorphic in bull trout.  Averaging over

more independent loci would certainly increase the accuracy of estimates of genetic

differentiation (Waples and Teel 1990).  Although I did not measure many adaptive traits,

it is clear that migratory timing between the two streams does not differ (Chapter 2).  The

relative proportions of different juvenile age classes present during sampling for

microsatellite analysis (Figs. 3-3 and 3-4) suggest that juvenile rearing times are similar.

General life history, with migrations to and from Kootenay Lake, appears the same in bull

trout from both streams.  There was a significant, but not robust, trend for larger radio-

tagged bull trout in larger tributary streams, but this may also reflect a lack of precise

homing (Chapter 2).

Number of migrants

As described by Whitlock and McCauley (1999), estimation of the number of

migrants (Nem) from FST is not accurate.  The assumptions of the “Fantasy Island” model

(Wright’s island model of population subdivision – Wright 1943; Whitlock and McCauley

1999), which should be met for calculation of number of migrants from FST, have been

violated in my calculations.  Specifically, Wright’s island model assumes: that the number
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of populations is infinite; population sizes are equal and do not fluctuate; breeding is

random; generations are discreet; each population contributes the same number of

migrants, and the probability of migration to one population is equal to all others; the

migration rate is small; and that there is no selection or mutation.  Telemetry data showing

variable number of tagged bull trout spawning in various spawning stream ‘populations’

suggest that population size is different among streams.  Telemetry also suggests that the

migration rate may be quite large.  I also only sampled two of an unknown number of

possible populations that have overlapping generations.  Despite these breaches of the

assumptions of the model, I decided that the estimation of Nem was justified to allow at

least a qualitative comparison of movement rates between spawning streams in the upper

Duncan R. based on genetic and telemetry data.

 The problem of estimation of Nem from FST is particularly acute at small values

of FST, as found in this study.  When I used the bootstrap estimates of the 95% confidence

interval to calculate approximate confidence intervals for my estimate of Nem, the range

(from 7.2 to an infinite number of individuals) highlights this problem.  Nem estimates are

very sensitive to small changes in FST when FST < 0.01 (Waples 1989; Whitlock and

McCauley 1999).

On a purely qualitative level, my estimates of ‘migration’ between spawning

streams based on telemetry and genetic data are similar.  As reported in Chapter 2, an

approximate estimate of the total number of bull trout changing spawning destination in

the upper Duncan R. over two consecutive years is 40 to 50 individuals.  The FST based

estimate of 24.8 effective migrant individuals per generation equals approximately 5

effective migrants per year, between Houston Cr. and Westfall R. specifically, with a five

year generation time.  This qualitative agreement suggests two important things: first, that

my violation of assumptions of the calculation of number of migrants from FST was not

completely unrealistic; and second, that the telemetry spawning stream switching result

was not spurious, and likely reflects a high level of current and historical gene flow

between, at least, Houston Cr. and Westfall R.

The impact of gene flow is dependent on population size (Hartl and Clark 1989).

To best evaluate the effects of gene flow on population structure, I need an estimate of
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migration rate (m).  The effective population size, Ne, is the idealized number of breeding

individuals giving rise to observed levels of random genetic drift (Hartl and Clark 1989).

In fishes, the proportion of census size that Ne reflects is generally less than 20%

(Frankham 1995; Miller and Kapuscinski 1997).  If I assume that the number of spawning

individuals in both Houston Cr. and Westfall R. average approximately 100 to 150

individuals (from Houston Cr. trap data - Chapter 2), Ne may be as small as 20 to 30

individuals in each stream.  With Ne = 25, m ≅ 1, suggesting that nearly all bull trout move

between Houston Cr. and Westfall R. for spawning.   With Ne equal to estimates of

spawning census size (Ne =150), migration rate is approximately 15 to 25 % per

generation.  In the most conservative case, using the lower 95% C.I. of the Nem estimate

(7.8 individuals) and census size as Ne (≅150), migration rate is still > 5 %.  A migration

rate of 5% would tend to genetically homogenize otherwise separate populations (Hartl

and Clark 1989; Mills and Allendorf 1996).

Comparison to previous bull trout studies

My results differ from those of other fine-scale bull trout genetic studies (Spruell

et al. 1999; Costello and Taylor unpublished manuscript).  Spruell et al. (1999) estimated

FST at 0.063 between samples of bull trout from five tributary populations within the

Lightning Cr. drainage, and found significant differentiation between all population pairs.

Lightning Cr. is tributary to the Clark Fork River, Idaho, and drains approximately 220

km2 into Lake Pend Oreille (Spruell et al. 1999), thus, it is less than 20 % the size of upper

Duncan River.  Costello and Taylor (unpubl. MS) estimated FST values ranging from 0.01

to 0.31, 0.01 to 0.68, and 0.08 to 0.93 across bull trout populations within watersheds

tributary to the Peace, Kootenay, and Red Deer and Oldman rivers, respectively.  Sample

sites in Costello and Taylor’s study (unpubl. MS) were separated by as much as 200 km in

each system.  Generally, where Costello and Taylor (unpubl. MS) estimated small, but

significant, pairwise FST values, sample sites were within the same watershed or even the

same stream.  Only in one small watershed did Costello and Taylor (unpublished MS) find

no significant genetic differentiation among samples (see below).  One difference between

my study and the other studies is that Houston Cr. and Westfall R. seem to support only
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migratory bull trout (Chapter 2).  Costello and Taylor (unpublished manuscript) found that

if they removed samples collected from above barriers to migration (populations

geographically isolated from migrant populations) from their analysis, it reduced within

watershed estimates of FST by approximately one half.  Spruell et al. (1999) give no

specifics detailing which, if any, of the populations they sampled were isolated.  Perhaps

sampling isolated populations inflated their estimates of genetic differentiation.

Latham and Taylor (in press), examined population structuring among bull trout

spawning streams tributary to Arrow Lake in the Columbia River, adjacent to Duncan

River.  Maximum distance between sampled streams in Arrow Lake and the Columbia was

approximately 200 km (Latham and Taylor in press).  They found evidence of genetic

divergence among these streams, specifically a north – south shift in both microsatellite

allele frequencies and mtDNA haplotype patterns. Latham and Taylor (in press) estimated

a FST of 0.11 for microsatellites across their sampling area, excluding above barrier

populations.  They interpreted their results as strong evidence for either accurate homing

or low reproductive success in straying fish.  Latham and Taylor’s (in press) general

result, like that of Spruell et al. 1999 and most areas examined by Costello and Taylor

(unpubl. MS) stand in sharp contrast to my results.

My findings are consistent with genetic results from one other watershed.

Costello and Taylor (unpubl. MS) found insignificant pairwise FST among three sample

sites within the Wigwam River, a tributary of the Elk River that drains nearly 800 km2.

The Elk River flows into Kokanoosa Reservoir, on the Kootenay River upstream of

Kootenay Lake.  Like the upper Duncan River, a lacustrine population of bull trout (from

Kokanoosa Reservoir) spawns in Wigwam River; although, prior to the construction of

Libby Dam (1972), this would have been a fluvial population.

There are several possible reasons why my findings from the upper Duncan River

differ from most other bull trout studies.  One possible reason, as described previously, is

that my sites were not isolated from each other.  Telemetry results (Chapter 2), and the

apparent absence of large mature fish prior to arrival of migrating adults, suggest that

Houston Cr. and Westfall R. do not contain resident adult bull trout.  Another possibility

is that the spatial scale of my comparison is too small; however, one purpose of my study
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was to determine if more than one population spawned in the upper Duncan River.

Although the streams I sampled for this comparison are geographically close together,

distances are apparently more than enough for significant population divergence in bull

trout (Spruell et al. 1999; Costello and Taylor unpubl. MS), and certainly other salmonids

(Quinn et al. 1987; Taylor 1991; Tallman and Healey 1994; Angers et al. 1995; Carlsson

et al. 1999).

Perhaps Duncan Dam has had an impact on genetic population structure within

the upper Duncan R., by restricting access from Kootenay Lake.  In 1997, the dam had

been present for 30 years.  At most, this equates to six bull trout generations and the

impact of gene flow and other demographic processes on allele frequency differences

among populations are usually integrated over longer time scales than this (Whitlock

1992).  If bull trout from separate spawning streams in the upper Duncan River

represented genetically distinct populations prior to 1967 and the effect of the dam was to

make all of these populations breed randomly with one another, six generations would be

enough to homogenize any genetic differentiation that had existed.  This scenario seems

unlikely, given evidence for movement through the dam in both directions by radio-tagged

bull trout (Chapter 2).

Conservation implications

The genetic comparison between Houston Cr. and Westfall R. bull trout suggests

that the switching behaviour suggested in Chapter 2 produces gene flow among upper

Duncan tributaries.  Although the microsatellite comparison includes only Houston Creek

and Westfall River, the telemetry results indicate that this result applies across the streams

entered by radio-tagged bull trout in the upper Duncan River.  Thus, the population

boundary of bull trout in the upper Duncan River apparently includes all spawning

tributaries.  So, at what spatial scale are bull trout migrating to the upper Duncan River

divided into genetically distinct populations?  Without comparisons outside the upper

Duncan River, it is only possible to speculate.  Based on other studies of genetic

differentiation, the next available watershed unit above individual spawning streams is the

whole upper Duncan River.  Perhaps, a comparison of migrant bull trout from Kootenay
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Lake entering the Duncan and Lardeau rivers might reveal genetic divergence between

these major Kootenay Lake inlet rivers.  My results suggest that from the perspective of

conservation and management, the bull trout that migrate from Kootenay Lake to the

upper Duncan River should be considered part of the same, essentially panmictic,

population.

3.5    Appendix

Table 3-7. Loci specific PRC protocols.  Reaction step abbreviations are: D – denature, A –
anneal, E – extend. Time notation is m:ss.  The reactions of starred loci included DMSO
(see text).

PCR Profile
Step 1 Step 2 Step 3

Locus D A E cycles D A E cycles D A E cycles
Ogo  2 * temp. 95 1 94 56 72 5 93 55 72 25

time 3:00 1:00 1:00 1:00 1:00 1:00 1:00
Omy  77 temp. 95 56 72 1 94 56 72 5 92 54 72 25

time 3:00 2:00 1:00 1:00 1:00 1:00 1:00 0:30 0:30
Ots  101 * temp. 95 1 94 56 72 5 93 55 72 25

time 3:00 1:00 1:00 1:00 1:00 1:00 1:00
Sco  19 * temp. 95 52 72 1 94 52 72 5 92 50 72 25

time 3:00 2:00 3:00 1:00 1:00 1:00 1:00 1:00 1:00
Sco  23 temp. 95 61 72 1 94 61 72 5 92 60 72 25

time 2:00 1:00 1:00 1:00 1:00 1:00 0:45 0:45 0:30
Sfo  18 temp. 94 65 72 15 94 65 72 20

time 1:00 0:35 0:10 0:35 0:35 0:10
Ssa  197 temp. 95 58 72 1 94 58 72 5 94 57 72 25

time 2:00 1:00 0:30 1:00 1:00 0:30 0:45 0:45 0:30
Ssa  311 * temp. 95 1 94 56 72 5 93 55 72 25

time 3:00 1:00 1:00 1:00 1:00 1:00 1:00
Ssa  456 temp. 95 1 94 56 72 5 93 55 72 25

time 3:00 1:00 1:00 1:00 1:00 1:00 1:00
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Figure 3-6.  The allele frequencies of microsatellite locus Ogo 2 from sampled bull trout by age
class (0+, 1+, and 2+ top to bottom) and stream (Houston Creek – right, Westfall River
– left).
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Figure 3-7. The allele frequencies of microsatellite locus Omy 77 from sampled bull trout by age
class (0+, 1+, and 2+ top to bottom) and stream (Houston Creek – right, Westfall River
– left).
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Figure 3-8. The allele frequencies of microsatellite locus Sco 19 from sampled bull trout by age
class (0+, 1+, and 2+ top to bottom) and stream (Houston Creek – right, Westfall River
– left).
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Figure 3-9. The allele frequencies of microsatellite locus Sco 23 from sampled bull trout by age
class (0+, 1+, and 2+ top to bottom) and stream (Houston Creek – right, Westfall River
– left).
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Figure 3-10. The allele frequencies of microsatellite locus Ssa 197 from sampled bull trout by age
class (0+, 1+, and 2+ top to bottom) and stream (Houston Creek – right, Westfall River
– left).
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Figure 3-11. The allele frequencies of microsatellite locus Ssa 456 from sampled bull trout by age
class (0+, 1+, and 2+ top to bottom) and stream (Houston Creek – right, Westfall River
– left).



71

Chapter 4 – General conclusions

Migratory timing and spawning locations in the upper Duncan River

I wanted to determine the timing of bull trout migrations in the Duncan River.  In

addition, I wanted to identify which streams bull trout use for spawning in the upper

Duncan River.  Using radio telemetry, I recorded the migration of bull trout from

Kootenay Lake to spawning locations in the upper Duncan River, where I identified six

putative bull trout spawning streams.  Over two years, the proportion of bull trout

migrating to these streams and destinations in the mainstem upper Duncan River did not

change.  The timing of migrations did not vary over the two years of detailed telemetry.

These predictable migrations allow conservation and management measures, such as

angling restrictions, land use decisions, or flow releases from dams, to focus on specific

locations and times that will best benefit the migrating fish.

Apparently, bull trout migrating to destinations in the mainstem upper Duncan

River do not spawn.  Swanberg (1997) suggested that similar findings for bull trout in the

Blackfoot River were related to avoidance of high summer water temperatures.  The high

summer temperatures in Kootenay Lake and Duncan River probably are not warm enough

to explain these non-spawning migrations.  The non-spawning movements were not

related to feeding, as prey fish were scarce in the upper Duncan River during the summer

and fall sampling periods.  This result suggests that adult bull trout use more river habitat

in the summer than suggested from spawning area use alone.  Perhaps to best protect bull

trout, habitat protection measures should focus on the upper reaches of spawning systems,

not just specific spawning locations.

Spawning stream selection

I examined the hypothesis that bull trout select spawning stream based on size, as

suggested by McPhail and Murray (1979). The size of radio-tagged bull trout, both in

length and mass, differed by destination in the upper Duncan River.  There was a

significant, but not robust, relationship between fish length and catchment area of the

tributary they entered.  This result suggests support for the suggestion that bull trout
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switch to larger spawning streams as they age and grow (McPhail and Murray 1979).  The

result may also mean that there is a general lack of accurate homing at the level of

spawning stream within the upper Duncan River.  If bull trout spawning habitat

requirements change as they grow, then perhaps the lacustrine life history of Kootenay

Lake bull trout, and the large sizes they attain, result in reduced homing accuracy.

Of six bull trout tracked migrating into the upper Duncan River in consecutive

years, four changed their destination in the upper Duncan River by 10 km from the

previous year.  Two of the six migrated to putative spawning tributaries in both tracking

years, and both switched to a stream with a smaller catchment area during the second

year.  This result is contradictory to McPhail and Murray’s (1979) hypothesis.  The stream

switching behaviour of these fish suggests that bull trout do not home to specific spawning

streams in the upper Duncan River.  Without confirmation of spawning at both locations,

switching tributaries does not necessarily reflect gene flow between spawning locations.

 I used fish trap captures and known numbers of radio-tagged fish to extrapolate

a rough number of spawning-stream-switchers.  This extrapolation is very crude, but

represents my attempt to qualitatively compare the results of telemetry with estimates of

the number of migrants inferred from microsatellite allele frequency data.

Population structure and gene flow

I evaluated the spatial scale of population structure in the upper Duncan River.  I

asked if bull trout in different spawning streams act as genetically distinct populations.  I

was also interested in qualitative comparisons between the amount of movement between

spawning streams and estimates of gene flow from molecular data.  I collected

microsatellite data from juvenile bull trout sampled in Houston Creek and Westfall River

(two confirmed spawning tributaries in the upper Duncan River).  A Fisher exact test of

differentiation between the two tributaries using six polymorphic loci was not significant.

An AMOVA, however, suggests a small (< 1%) but significant component of genetic

variation is attributable to the between stream variance component.  This suggests that

bull trout in the upper Duncan River, as suggested by telemetry results, but contrary to
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most other bull trout genetic studies done at similar spatial scales, are not divided into

separate populations in different spawning tributaries.

I calculated the number of effective migrants from estimates of genetic

differentiation between spawning streams.  This estimate is similar to the extrapolation of

the number of spawning-stream-switchers using telemetry.  A conservative estimate of

migration rate is > 5 %.

The difference between this result and other results from studies of bull trout and

other fish species is of concern.  The spatial scale I examined is small; however, significant

differentiation has been found at smaller geographic scales (Spruell et al. 1999; Costello

and Taylor unpubl. MS).  Another possibility is that some of the differentiation found in

other studies was related to sampling resident bull trout populations.  In some cases there

is no clear indication of the status of populations sampled (Spruell et al. 1999), while in

others (Latham and Taylor in press; Costello and Taylor unpubl. MS), above barrier

populations were removed and analysed separately.  My results are reasonable considering

that pooled sample size is ≥ 50 for six polymorphic microsatellite loci in each spawning

stream.  It is possible that uncovered differentiation, and perhaps adaptive differences,

exist between the two streams I compared (Utter et al. 1992; Hedrick 1999).

Results similar to this study were found in the Wigwam River (Costello and

Taylor, unpubl. MS).  Wigwam River bull trout have a similar life history to the bull trout

migrating into the upper Duncan River (Oliver 1979), and sample sites are from areas

below barriers to migration (Costello and Taylor, unpubl. MS).  Perhaps the similar life

history, and growth to large size, plays an important role in the apparent lack of

population divergence within the Wigwam and upper Duncan rivers.

Comparison between methods

Direct evidence of bull trout switching spawning stream from telemetry was

reflected in estimates of genetic differentiation between Houston Creek and Westfall

River.  This result is not surprising.  Often, a criticism of direct monitoring of dispersal or

movement for making inferences about gene flow is that rare but biologically important

movements are easily missed (Whitlock and McCauley 1999).  In this study, by restricting
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focus to the upper Duncan River, I was able to document a relatively common movement

that indicated potential for high levels of gene flow.  The microsatellite comparison

presented in chapter 3 was certainly justified, as the telemetry data only suggested gene

flow.  On a qualitative level, the estimate of spawning-stream-switchers from telemetry

was similar to the equivalent estimate, the number of effective migrants, from

microsatellite allele frequencies.  This suggests that all of the bull trout that switch

spawning tributaries in the upper Duncan River successfully spawn in both locations.

Also, this result suggests that the simple relationship between FST and Nem I used was

robust to violations of the assumptions of the Wright’s (1943) island model of population

structure.

Conservation and management implications

The movement data I have collected allows conservation and management

activities in the Duncan River to focus specifically on migrating fish.  Habitat protection,

angling regulations, and dam operation can be seasonally modified to better protect and

assist bull trout movement and reproduction.  As suggested above, the migration of non-

spawning bull trout to areas downstream of spawning locations also provides information

relevant to conservation and management.  It seems that more habitat than would be

predicted based on location of spawning sites is important for migrating bull trout.

Perhaps habitat protection efforts should include more the upper reaches of bull trout

spawning systems, not just spawning locations.

The bull trout is an iteroparous salmonid, and as such accurate homing may

provide less selective advantage for spawning than in semelparous species like Pacific

salmon (Banks 1969).  A missed opportunity for reproduction in bull trout may not greatly

reduce fitness.  In addition, bull trout appear specialized for cold water habitats (Rieman

and McIntyre 1993; Parkinson and Haas 1996).  Perhaps the ephemeral nature of cold

water habitats (often associated with mountainous terrain and glaciation) contributes to a

lower selective advantage for homing to the natal stream.  Indeed, some radio-tagged bull

trout in the upper Duncan River migrated to the upper extent of available habitat.  This
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suggests the species may have exploratory behaviour that is adaptive in ephemeral

habitats.

Comparison of the result from Houston Creek and Westfall River to other bull

trout genetic studies suggest that barriers to migration play an important role in genetic

divergence in bull trout.  For conservation purposes, when surveying bull trout genetic

variation, care must be taken to identify populations isolated by migration barriers.  It is

important to note that barriers to migration are some times obvious, such as waterfalls or

mountain ranges; however, they are not always readily apparent (Waples 1998; Bohonak

1999).  My results suggest that where bull trout have open access to habitat, the spatial

scale of populations may be larger than the typical unit of conservation and management -

individual spawning streams - in salmonids (Taylor 1991).
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